Suppr超能文献

在甲烷厌氧微生物氧化和硫酸盐还原耦合过程中碳和硫的反向通量。

Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction.

机构信息

Max Planck Institute for Marine Microbiology, Laboratories for Microbiology, Biogeochemistry, and Microbial Habitats, 28359 Bremen, Germany.

出版信息

Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):E1484-90. doi: 10.1073/pnas.1106032108. Epub 2011 Dec 12.

Abstract

Microbial degradation of substrates to terminal products is commonly understood as a unidirectional process. In individual enzymatic reactions, however, reversibility (reverse reaction and product back flux) is common. Hence, it is possible that entire pathways of microbial degradation are associated with back flux from the accumulating product pool through intracellular intermediates into the substrate pool. We investigated carbon and sulfur back flux during the anaerobic oxidation of methane (AOM) with sulfate, one of the least exergonic microbial catabolic processes known. The involved enzymes must operate not far from the thermodynamic equilibrium. Such an energetic situation is likely to favor product back flux. Indeed, cultures of highly enriched archaeal-bacterial consortia, performing net AOM with unlabeled methane and sulfate, converted label from (14)C-bicarbonate and (35)S-sulfide to (14)C-methane and (35)S-sulfate, respectively. Back fluxes reached 5% and 13%, respectively, of the net AOM rate. The existence of catabolic back fluxes in the reverse direction of net reactions has implications for biogeochemical isotope studies. In environments where biochemical processes are close to thermodynamic equilibrium, measured fluxes of labeled substrates to products are not equal to microbial net rates. Detection of a reaction in situ by labeling may not even indicate a net reaction occurring in the direction of label conversion but may reflect the reverse component of a so far unrecognized net reaction. Furthermore, the natural isotopic composition of the substrate and product pool will be determined by both the forward and back flux. This finding may have to be considered in the interpretation of stable isotope records.

摘要

微生物将基质降解为末端产物通常被理解为一个单向过程。然而,在单个酶反应中,可逆性(反向反应和产物回流)很常见。因此,整个微生物降解途径都可能与从积累的产物池中通过细胞内中间体回流到基质池有关。我们研究了在硫酸盐存在下进行的甲烷厌氧氧化(AOM)过程中的碳和硫回流,硫酸盐是已知的最放能微生物分解代谢过程之一。所涉及的酶必须在远离热力学平衡的位置运作。这种能量情况很可能有利于产物回流。事实上,进行净 AOM 的高度富集古菌-细菌共培养物的培养物,用未标记的甲烷和硫酸盐转化了(14)C-碳酸氢盐和(35)S-硫化物的标记物,分别转化为(14)C-甲烷和(35)S-硫酸盐。回流分别达到净 AOM 速率的 5%和 13%。在净反应的反方向上存在分解代谢回流,这对生物地球化学同位素研究具有影响。在生物化学过程接近热力学平衡的环境中,标记底物到产物的测量通量不等于微生物净速率。通过标记原位检测到的反应甚至不一定表示正在发生向标记转化的净反应,而可能反映了尚未认识到的净反应的反向成分。此外,基质和产物池的自然同位素组成将由前向和后向通量共同决定。在解释稳定同位素记录时,可能需要考虑这一发现。

相似文献

1
Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction.
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):E1484-90. doi: 10.1073/pnas.1106032108. Epub 2011 Dec 12.
2
Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea.
Appl Environ Microbiol. 2019 Mar 22;85(7). doi: 10.1128/AEM.02638-18. Print 2019 Apr 1.
3
Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction.
Environ Microbiol. 2012 Oct;14(10):2726-40. doi: 10.1111/j.1462-2920.2012.02825.x. Epub 2012 Jul 25.
4
Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane.
Environ Microbiol. 2011 May;13(5):1370-9. doi: 10.1111/j.1462-2920.2011.02443.x. Epub 2011 Mar 9.
5
Dynamic modeling of anaerobic methane oxidation coupled to sulfate reduction: role of elemental sulfur as intermediate.
Bioprocess Biosyst Eng. 2021 Apr;44(4):855-874. doi: 10.1007/s00449-020-02495-2. Epub 2021 Feb 10.
6
Simultaneous nitrate and sulfate dependent anaerobic oxidation of methane linking carbon, nitrogen and sulfur cycles.
Water Res. 2021 Apr 15;194:116928. doi: 10.1016/j.watres.2021.116928. Epub 2021 Feb 13.
7
Methane seepage intensity distinguish microbial communities in sediments at the Mid-Okinawa Trough.
Sci Total Environ. 2022 Dec 10;851(Pt 2):158213. doi: 10.1016/j.scitotenv.2022.158213. Epub 2022 Aug 24.
8
Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source.
ISME J. 2016 Jun;10(6):1400-12. doi: 10.1038/ismej.2015.213. Epub 2015 Dec 4.
9
Immunological detection of enzymes for sulfate reduction in anaerobic methane-oxidizing consortia.
Environ Microbiol. 2013 May;15(5):1561-71. doi: 10.1111/1462-2920.12003. Epub 2012 Oct 24.
10
Thermophilic anaerobic oxidation of methane by marine microbial consortia.
ISME J. 2011 Dec;5(12):1946-56. doi: 10.1038/ismej.2011.77. Epub 2011 Jun 23.

引用本文的文献

2
Clumped isotopes of methane trace bioenergetics in the environment.
Sci Adv. 2025 Jun 27;11(26):eadu1401. doi: 10.1126/sciadv.adu1401. Epub 2025 Jun 25.
4
Back flux during anaerobic oxidation of butane support archaea-mediated alkanogenesis.
Nat Commun. 2024 Nov 7;15(1):9628. doi: 10.1038/s41467-024-53932-9.
6
Respiration-driven methanotrophic growth of diverse marine methanogens.
Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2303179120. doi: 10.1073/pnas.2303179120. Epub 2023 Sep 20.
7
Generation of zero-valent sulfur from dissimilatory sulfate reduction in sulfate-reducing microorganisms.
Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2220725120. doi: 10.1073/pnas.2220725120. Epub 2023 May 8.
8
Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea.
PLoS Biol. 2022 Jan 5;20(1):e3001508. doi: 10.1371/journal.pbio.3001508. eCollection 2022 Jan.
9
Rapid microbial methanogenesis during CO storage in hydrocarbon reservoirs.
Nature. 2021 Dec;600(7890):670-674. doi: 10.1038/s41586-021-04153-3. Epub 2021 Dec 22.

本文引用的文献

1
Variation of carbon isotope fractionation in hydrogenotrophic methanogenic microbial cultures and environmental samples at different energy status.
Glob Chang Biol. 2005 Dec;11(12):2103-2113. doi: 10.1111/j.1365-2486.2005.01076.x. Epub 2005 Nov 21.
2
Substantial (13) C/(12) C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro.
Environ Microbiol Rep. 2009 Oct;1(5):370-6. doi: 10.1111/j.1758-2229.2009.00074.x. Epub 2009 Sep 23.
3
Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade.
Environ Microbiol. 2010 Aug;12(8):2327-40. doi: 10.1111/j.1462-2920.2010.02275.x. Epub 2010 Jul 9.
4
Large sulfur isotope fractionation does not require disproportionation.
Science. 2011 Jul 1;333(6038):74-7. doi: 10.1126/science.1205103.
5
The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane.
Nature. 2010 Jun 3;465(7298):606-8. doi: 10.1038/nature09015.
6
Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment.
Appl Microbiol Biotechnol. 2010 Jul;87(4):1499-506. doi: 10.1007/s00253-010-2597-0. Epub 2010 May 6.
7
Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge.
FEMS Microbiol Ecol. 2010 May;72(2):261-71. doi: 10.1111/j.1574-6941.2010.00849.x. Epub 2010 Feb 15.
8
Electron transfer in syntrophic communities of anaerobic bacteria and archaea.
Nat Rev Microbiol. 2009 Aug;7(8):568-77. doi: 10.1038/nrmicro2166.
9
Anaerobic oxidation of methane: progress with an unknown process.
Annu Rev Microbiol. 2009;63:311-34. doi: 10.1146/annurev.micro.61.080706.093130.
10
On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.
Environ Microbiol. 2008 May;10(5):1108-17. doi: 10.1111/j.1462-2920.2007.01526.x. Epub 2008 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验