Center for Pediatric Behavioral Health and Center for Autism, Cleveland Clinic, OH, USA.
J Am Acad Child Adolesc Psychiatry. 2012 Jan;51(1):28-40.e3. doi: 10.1016/j.jaac.2011.09.021. Epub 2011 Nov 21.
The primary aim of the present study was to evaluate the validity of proposed DSM-5 criteria for autism spectrum disorder (ASD).
We analyzed symptoms from 14,744 siblings (8,911 ASD and 5,863 non-ASD) included in a national registry, the Interactive Autism Network. Youth 2 through 18 years of age were included if at least one child in the family was diagnosed with ASD. Caregivers reported symptoms using the Social Responsiveness Scale and the Social Communication Questionnaire. The structure of autism symptoms was examined using latent variable models that included categories, dimensions, or hybrid models specifying categories and subdimensions. Diagnostic efficiency statistics evaluated the proposed DSM-5 algorithm in identifying ASD.
A hybrid model that included both a category (ASD versus non-ASD) and two symptom dimensions (social communication/interaction and restricted/repetitive behaviors) was more parsimonious than all other models and replicated across measures and subsamples. Empirical classifications from this hybrid model closely mirrored clinical ASD diagnoses (90% overlap), implying a broad ASD category distinct from non-ASD. DSM-5 criteria had superior specificity relative to DSM-IV-TR criteria (0.97 versus 0.86); however sensitivity was lower (0.81 versus 0.95). Relaxing DSM-5 criteria by requiring one less symptom criterion increased sensitivity (0.93 versus 0.81), with minimal reduction in specificity (0.95 versus 0.97).
Results supported the validity of proposed DSM-5 criteria for ASD as provided in Phase I Field Trials criteria. Increased specificity of DSM-5 relative to DSM-IV-TR may reduce false positive diagnoses, a particularly relevant consideration for low base rate clinical settings. Phase II testing of DSM-5 should consider a relaxed algorithm, without which as many as 12% of ASD-affected individuals, particularly females, will be missed. Relaxed DSM-5 criteria may improve identification of ASD, decreasing societal costs through appropriate early diagnosis and maximizing intervention resources.
本研究的主要目的是评估DSM-5 自闭症谱系障碍(ASD)标准的有效性。
我们分析了来自全国注册机构互动自闭症网络(Interactive Autism Network)的 14744 名兄弟姐妹(8911 名 ASD 和 5863 名非 ASD)的症状。如果家庭中至少有一名儿童被诊断为 ASD,则将 2 至 18 岁的儿童纳入研究。照顾者使用社交反应量表和社交沟通问卷报告症状。使用包括类别、维度或混合模型(指定类别和子维度)的潜在变量模型来检查自闭症症状的结构。诊断效率统计数据评估了用于识别 ASD 的 DSM-5 算法。
一个包括类别(ASD 与非 ASD)和两个症状维度(社交沟通/互动和受限/重复行为)的混合模型比所有其他模型都更为简洁,并且在不同的测量方法和子样本中都得到了复制。来自这个混合模型的实证分类与临床 ASD 诊断非常吻合(重叠率为 90%),这意味着 ASD 是一个与非 ASD 不同的广泛类别。与 DSM-IV-TR 标准相比,DSM-5 标准具有更高的特异性(0.97 对 0.86);然而,敏感性较低(0.81 对 0.95)。放宽 DSM-5 标准,要求减少一个症状标准,可提高敏感性(0.93 对 0.81),特异性降低幅度较小(0.95 对 0.97)。
结果支持 DSM-5 用于 ASD 的标准的有效性,这些标准是在第一阶段现场试验标准中提出的。与 DSM-IV-TR 相比,DSM-5 的特异性增加可能会减少假阳性诊断,这对于低发病率的临床环境来说是一个特别相关的考虑因素。DSM-5 的第二阶段测试应考虑放宽算法,否则多达 12%的受 ASD 影响的个体,特别是女性,将被遗漏。放宽的 DSM-5 标准可能会改善 ASD 的识别,通过适当的早期诊断降低社会成本,并最大限度地利用干预资源。