Cooper Lee A D, Kong Jun, Wang Fusheng, Kurc Tahsin, Moreno Carlos S, Brat Daniel J, Saltz Joel H
Center for Comprehensive Informatics, Emory University, Atlanta, GA 30322.
Proc IEEE Int Symp Biomed Imaging. 2011 Mar 30:1624-1627. doi: 10.1109/ISBI.2011.5872714.
Large multimodal datasets such as The Cancer Genome Atlas present an opportunity to perform correlative studies of tissue morphology and genomics to explore the morphological phenotypes associated with gene expression and genetic alterations. In this paper we present an investigation of Cancer Genome Atlas data that correlates morphology with recently discovered molecular subtypes of glioblastoma. Using image analysis to segment and extract features from millions of cells, we calculate high-dimensional morphological signatures to describe trends of nuclear morphology and cytoplasmic staining in whole-slide images. We illustrate the similarities between the analysis of these signatures and predictive studies of gene expression, both in terms of limited sample size and high-dimensionality. Our top-down analysis demonstrates the power of morphological signatures to predict clinically-relevant molecular tumor subtypes, with 85.4% recognition of the proneural subtype. A complementary bottom-up analysis shows that self-aggregating clusters have statistically significant associations with tumor subtype and reveals the existence of remarkable structure in the morphological signature space of glioblastomas.
像癌症基因组图谱这样的大型多模态数据集为开展组织形态学与基因组学的相关性研究提供了契机,以探索与基因表达和基因改变相关的形态学表型。在本文中,我们对癌症基因组图谱数据进行了一项研究,该研究将形态学与最近发现的胶质母细胞瘤分子亚型相关联。通过图像分析从数百万个细胞中进行分割和提取特征,我们计算高维形态学特征以描述全切片图像中细胞核形态和细胞质染色的趋势。我们从样本量有限和高维度这两方面说明了这些特征分析与基因表达预测研究之间的相似性。我们的自上而下分析证明了形态学特征预测临床相关分子肿瘤亚型的能力,对神经干细胞样亚型的识别率达85.4%。一项互补的自下而上分析表明,自聚集簇与肿瘤亚型具有统计学上的显著关联,并揭示了胶质母细胞瘤形态学特征空间中存在显著结构。