Suppr超能文献

胶质母细胞瘤的形态学特征与基因组相关性

MORPHOLOGICAL SIGNATURES AND GENOMIC CORRELATES IN GLIOBLASTOMA.

作者信息

Cooper Lee A D, Kong Jun, Wang Fusheng, Kurc Tahsin, Moreno Carlos S, Brat Daniel J, Saltz Joel H

机构信息

Center for Comprehensive Informatics, Emory University, Atlanta, GA 30322.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2011 Mar 30:1624-1627. doi: 10.1109/ISBI.2011.5872714.

Abstract

Large multimodal datasets such as The Cancer Genome Atlas present an opportunity to perform correlative studies of tissue morphology and genomics to explore the morphological phenotypes associated with gene expression and genetic alterations. In this paper we present an investigation of Cancer Genome Atlas data that correlates morphology with recently discovered molecular subtypes of glioblastoma. Using image analysis to segment and extract features from millions of cells, we calculate high-dimensional morphological signatures to describe trends of nuclear morphology and cytoplasmic staining in whole-slide images. We illustrate the similarities between the analysis of these signatures and predictive studies of gene expression, both in terms of limited sample size and high-dimensionality. Our top-down analysis demonstrates the power of morphological signatures to predict clinically-relevant molecular tumor subtypes, with 85.4% recognition of the proneural subtype. A complementary bottom-up analysis shows that self-aggregating clusters have statistically significant associations with tumor subtype and reveals the existence of remarkable structure in the morphological signature space of glioblastomas.

摘要

像癌症基因组图谱这样的大型多模态数据集为开展组织形态学与基因组学的相关性研究提供了契机,以探索与基因表达和基因改变相关的形态学表型。在本文中,我们对癌症基因组图谱数据进行了一项研究,该研究将形态学与最近发现的胶质母细胞瘤分子亚型相关联。通过图像分析从数百万个细胞中进行分割和提取特征,我们计算高维形态学特征以描述全切片图像中细胞核形态和细胞质染色的趋势。我们从样本量有限和高维度这两方面说明了这些特征分析与基因表达预测研究之间的相似性。我们的自上而下分析证明了形态学特征预测临床相关分子肿瘤亚型的能力,对神经干细胞样亚型的识别率达85.4%。一项互补的自下而上分析表明,自聚集簇与肿瘤亚型具有统计学上的显著关联,并揭示了胶质母细胞瘤形态学特征空间中存在显著结构。

相似文献

1
MORPHOLOGICAL SIGNATURES AND GENOMIC CORRELATES IN GLIOBLASTOMA.
Proc IEEE Int Symp Biomed Imaging. 2011 Mar 30:1624-1627. doi: 10.1109/ISBI.2011.5872714.
2
Integrated morphologic analysis for the identification and characterization of disease subtypes.
J Am Med Inform Assoc. 2012 Mar-Apr;19(2):317-23. doi: 10.1136/amiajnl-2011-000700. Epub 2012 Jan 24.
3
The molecular basis of breast cancer pathological phenotypes.
J Pathol. 2017 Feb;241(3):375-391. doi: 10.1002/path.4847. Epub 2016 Dec 29.
5
Multivariate Analysis of Preoperative Magnetic Resonance Imaging Reveals Transcriptomic Classification of Glioblastoma Patients.
Front Comput Neurosci. 2019 Dec 12;13:81. doi: 10.3389/fncom.2019.00081. eCollection 2019.
6
Integrative analysis of diffusion-weighted MRI and genomic data to inform treatment of glioblastoma.
J Neurooncol. 2016 Sep;129(2):289-300. doi: 10.1007/s11060-016-2174-1. Epub 2016 Jul 8.
7
Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data.
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1091-8. doi: 10.1136/amiajnl-2012-001469. Epub 2013 Jul 25.
10
Sequencing the next generation of glioblastomas.
Crit Rev Clin Lab Sci. 2018 Jun;55(4):264-282. doi: 10.1080/10408363.2018.1462759. Epub 2018 Apr 18.

引用本文的文献

1
Rheumatoid Arthritis Synovial Inflammation Quantification Using Computer Vision.
ACR Open Rheumatol. 2022 Apr;4(4):322-331. doi: 10.1002/acr2.11381. Epub 2022 Jan 10.
3
Sensitivity analysis in digital pathology: Handling large number of parameters with compute expensive workflows.
Comput Biol Med. 2019 May;108:371-381. doi: 10.1016/j.compbiomed.2019.03.006. Epub 2019 Mar 13.
5
Feature-based Analysis of Large-scale Spatio-Temporal Sensor Data on Hybrid Architectures.
Int J High Perform Comput Appl. 2013 Aug;27(3):263-272. doi: 10.1177/1094342013488260. Epub 2013 Jun 9.
9
Versican isoform V1 regulates proliferation and migration in high-grade gliomas.
J Neurooncol. 2014 Oct;120(1):73-83. doi: 10.1007/s11060-014-1545-8. Epub 2014 Jul 27.

本文引用的文献

1
An integrative approach for in silico glioma research.
IEEE Trans Biomed Eng. 2010 Oct;57(10):2617-21. doi: 10.1109/TBME.2010.2060338. Epub 2010 Jul 23.
2
Local-learning-based feature selection for high-dimensional data analysis.
IEEE Trans Pattern Anal Mach Intell. 2010 Sep;32(9):1610-26. doi: 10.1109/TPAMI.2009.190.
4
Comprehensive genomic characterization defines human glioblastoma genes and core pathways.
Nature. 2008 Oct 23;455(7216):1061-8. doi: 10.1038/nature07385. Epub 2008 Sep 4.
5
Diagnosis of multiple cancer types by shrunken centroids of gene expression.
Proc Natl Acad Sci U S A. 2002 May 14;99(10):6567-72. doi: 10.1073/pnas.082099299.
6
Quantification of histochemical staining by color deconvolution.
Anal Quant Cytol Histol. 2001 Aug;23(4):291-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验