Suppr超能文献

癌症数字切片档案:一个信息学资源,支持 TCGA 病理数据的综合计算机分析。

Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data.

机构信息

Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA.

出版信息

J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1091-8. doi: 10.1136/amiajnl-2012-001469. Epub 2013 Jul 25.

Abstract

BACKGROUND

The integration and visualization of multimodal datasets is a common challenge in biomedical informatics. Several recent studies of The Cancer Genome Atlas (TCGA) data have illustrated important relationships between morphology observed in whole-slide images, outcome, and genetic events. The pairing of genomics and rich clinical descriptions with whole-slide imaging provided by TCGA presents a unique opportunity to perform these correlative studies. However, better tools are needed to integrate the vast and disparate data types.

OBJECTIVE

To build an integrated web-based platform supporting whole-slide pathology image visualization and data integration.

MATERIALS AND METHODS

All images and genomic data were directly obtained from the TCGA and National Cancer Institute (NCI) websites.

RESULTS

The Cancer Digital Slide Archive (CDSA) produced is accessible to the public (http://cancer.digitalslidearchive.net) and currently hosts more than 20,000 whole-slide images from 22 cancer types.

DISCUSSION

The capabilities of CDSA are demonstrated using TCGA datasets to integrate pathology imaging with associated clinical, genomic and MRI measurements in glioblastomas and can be extended to other tumor types. CDSA also allows URL-based sharing of whole-slide images, and has preliminary support for directly sharing regions of interest and other annotations. Images can also be selected on the basis of other metadata, such as mutational profile, patient age, and other relevant characteristics.

CONCLUSIONS

With the increasing availability of whole-slide scanners, analysis of digitized pathology images will become increasingly important in linking morphologic observations with genomic and clinical endpoints.

摘要

背景

多模态数据集的整合和可视化是生物医学信息学中的一个共同挑战。几项最近对癌症基因组图谱(TCGA)数据的研究表明,在全切片图像、结果和遗传事件之间存在重要关系。TCGA 提供的基因组学和丰富的临床描述与全切片成像的配对为进行这些相关研究提供了独特的机会。然而,需要更好的工具来整合大量不同类型的数据。

目的

构建一个支持全切片病理图像可视化和数据集成的集成式网络平台。

材料和方法

所有图像和基因组数据均直接从 TCGA 和美国国家癌症研究所(NCI)网站获取。

结果

生成的癌症数字切片档案(CDSA)可供公众访问(http://cancer.digitalslidearchive.net),目前托管来自 22 种癌症类型的超过 20,000 张全切片图像。

讨论

使用 TCGA 数据集演示了 CDSA 的功能,以将病理成像与胶质瘤相关的临床、基因组和 MRI 测量值进行整合,并可扩展到其他肿瘤类型。CDSA 还允许基于 URL 共享全切片图像,并初步支持直接共享感兴趣区域和其他注释。还可以根据其他元数据(例如突变特征、患者年龄和其他相关特征)选择图像。

结论

随着全切片扫描仪的日益普及,对数字化病理图像的分析将在将形态学观察与基因组和临床终点联系起来方面变得越来越重要。

相似文献

6
Feasibility of using the Omnyx digital pathology system for cytology practice.使用Omnyx数字病理系统进行细胞学实践的可行性。
J Am Soc Cytopathol. 2019 Jul-Aug;8(4):182-189. doi: 10.1016/j.jasc.2019.01.003. Epub 2019 Jan 18.
9
Pathology imaging informatics for quantitative analysis of whole-slide images.病理学成像信息学用于全切片图像的定量分析。
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1099-108. doi: 10.1136/amiajnl-2012-001540. Epub 2013 Aug 19.

引用本文的文献

9
Cancer pharmacoinformatics: Databases and analytical tools.癌症药物信息学:数据库和分析工具。
Funct Integr Genomics. 2024 Sep 19;24(5):166. doi: 10.1007/s10142-024-01445-5.

本文引用的文献

1
Managing and Querying Whole Slide Images.管理和查询全切片图像。
Proc SPIE Int Soc Opt Eng. 2012 Feb 16;8319. doi: 10.1117/12.912388.
6
Morphometic analysis of TCGA glioblastoma multiforme.TCGA 胶质母细胞瘤的形态计量分析。
BMC Bioinformatics. 2011 Dec 20;12:484. doi: 10.1186/1471-2105-12-484.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验