Suppr超能文献

协调分子调控机制与诱导和抑制状态下细菌代谢启动子的噪声模式。

Reconciling molecular regulatory mechanisms with noise patterns of bacterial metabolic promoters in induced and repressed states.

机构信息

Centre de Biochimie Structurale, Institut National pour la Santé et la Recherche Médicale U554, Centre National pour la Recherche Scientifique Unité Mixte de Recherche 5048, Université Montpellier 1 and 2, F-34090 Montpellier, France.

出版信息

Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):155-60. doi: 10.1073/pnas.1110541108. Epub 2011 Dec 21.

Abstract

Assessing gene expression noise in order to obtain mechanistic insights requires accurate quantification of gene expression on many individual cells over a large dynamic range. We used a unique method based on 2-photon fluorescence fluctuation microscopy to measure directly, at the single cell level and with single-molecule sensitivity, the absolute concentration of fluorescent proteins produced from the two Bacillus subtilis promoters that control the switch between glycolysis and gluconeogenesis. We quantified cell-to-cell variations in GFP concentrations in reporter strains grown on glucose or malate, including very weakly transcribed genes under strong catabolite repression. Results revealed strong transcriptional bursting, particularly for the glycolytic promoter. Noise pattern parameters of the two antagonistic promoters controlling the nutrient switch were differentially affected on glycolytic and gluconeogenic carbon sources, discriminating between the different mechanisms that control their activity. Our stochastic model for the transcription events reproduced the observed noise patterns and identified the critical parameters responsible for the differences in expression profiles of the promoters. The model also resolved apparent contradictions between in vitro operator affinity and in vivo repressor activity at these promoters. Finally, our results demonstrate that negative feedback is not noise-reducing in the case of strong transcriptional bursting.

摘要

为了获得机制上的见解,评估基因表达噪声需要在很大的动态范围内对许多单个细胞的基因表达进行准确量化。我们使用了一种基于双光子荧光波动显微镜的独特方法,以单分子灵敏度直接在单细胞水平上测量控制糖酵解和糖异生之间转换的两个枯草芽孢杆菌启动子产生的荧光蛋白的绝对浓度。我们量化了在葡萄糖或苹果酸上生长的报告菌株中 GFP 浓度的细胞间变化,包括在强分解代谢抑制下转录非常弱的基因。结果显示出强烈的转录爆发,特别是对于糖酵解启动子。控制营养开关的两个拮抗启动子的噪声模式参数在糖酵解和糖异生碳源上受到不同的影响,区分了控制它们活性的不同机制。我们的转录事件随机模型再现了观察到的噪声模式,并确定了导致启动子表达谱差异的关键参数。该模型还解决了这些启动子上体外操纵子亲和力与体内抑制剂活性之间的明显矛盾。最后,我们的结果表明,在强烈的转录爆发情况下,负反馈不会降低噪声。

相似文献

1
Reconciling molecular regulatory mechanisms with noise patterns of bacterial metabolic promoters in induced and repressed states.
Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):155-60. doi: 10.1073/pnas.1110541108. Epub 2011 Dec 21.
2
CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes.
Mol Microbiol. 2005 Mar;55(5):1435-51. doi: 10.1111/j.1365-2958.2005.04473.x.
3
Identification of ligands affecting the activity of the transcriptional repressor CcpN from Bacillus subtilis.
J Mol Biol. 2008 Jun 27;380(1):17-30. doi: 10.1016/j.jmb.2008.05.002. Epub 2008 May 8.
4
Malate-mediated carbon catabolite repression in Bacillus subtilis involves the HPrK/CcpA pathway.
J Bacteriol. 2011 Dec;193(24):6939-49. doi: 10.1128/JB.06197-11. Epub 2011 Oct 14.
5
Catabolite repression of the citST two-component system in Bacillus subtilis.
FEMS Microbiol Lett. 2006 Jul;260(2):224-31. doi: 10.1111/j.1574-6968.2006.00318.x.
7
Carbon catabolite control of the metabolic network in Bacillus subtilis.
Biosci Biotechnol Biochem. 2009 Feb;73(2):245-59. doi: 10.1271/bbb.80479. Epub 2009 Feb 7.
8
CodY is required for nutritional repression of Bacillus subtilis genetic competence.
J Bacteriol. 1996 Oct;178(20):5910-5. doi: 10.1128/jb.178.20.5910-5915.1996.
9
The transcriptional repressor CcpN from Bacillus subtilis uses different repression mechanisms at different promoters.
J Biol Chem. 2009 Oct 30;284(44):30032-8. doi: 10.1074/jbc.M109.033076. Epub 2009 Sep 2.
10
Interactions in gene expression networks studied by two-photon fluorescence fluctuation spectroscopy.
Methods Enzymol. 2013;519:203-30. doi: 10.1016/B978-0-12-405539-1.00007-5.

引用本文的文献

1
Response and adaptation of the transcriptional heat shock response to pressure.
Front Microbiol. 2024 Nov 18;15:1470617. doi: 10.3389/fmicb.2024.1470617. eCollection 2024.
2
Effects of microRNA-mediated negative feedback on gene expression noise.
Biophys J. 2023 Nov 7;122(21):4220-4240. doi: 10.1016/j.bpj.2023.09.019. Epub 2023 Oct 6.
4
Cell Growth Model with Stochastic Gene Expression Helps Understand the Growth Advantage of Metabolic Exchange and Auxotrophy.
mSystems. 2021 Aug 31;6(4):e0044821. doi: 10.1128/mSystems.00448-21. Epub 2021 Aug 3.
5
Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy.
Dis Model Mech. 2020 Dec 29;13(12):dmm046516. doi: 10.1242/dmm.046516.
6
Microbial metabolic noise.
WIREs Mech Dis. 2021 May;13(3):e1512. doi: 10.1002/wsbm.1512. Epub 2020 Nov 23.
7
Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria.
Microbiol Mol Biol Rev. 2020 Oct 28;84(4). doi: 10.1128/MMBR.00008-20. Print 2020 Nov 18.
10
Gene expression noise in a complex artificial toxin expression system.
PLoS One. 2020 Jan 21;15(1):e0227249. doi: 10.1371/journal.pone.0227249. eCollection 2020.

本文引用的文献

1
Absolute quantification of gene expression in individual bacterial cells using two-photon fluctuation microscopy.
Anal Biochem. 2011 Dec 15;419(2):250-9. doi: 10.1016/j.ab.2011.08.017. Epub 2011 Aug 22.
2
Impact of gene expression noise on organismal fitness and the efficacy of natural selection.
Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):E67-76. doi: 10.1073/pnas.1100059108. Epub 2011 Apr 4.
3
Exploring transcription regulation through cell-to-cell variability.
Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6329-34. doi: 10.1073/pnas.1013148108. Epub 2011 Mar 28.
4
Functional roles for noise in genetic circuits.
Nature. 2010 Sep 9;467(7312):167-73. doi: 10.1038/nature09326.
5
Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells.
Science. 2010 Jul 30;329(5991):533-8. doi: 10.1126/science.1188308.
6
Physical basis of the inducer-dependent cooperativity of the Central glycolytic genes Repressor/DNA complex.
Nucleic Acids Res. 2010 Sep;38(17):5944-57. doi: 10.1093/nar/gkq334. Epub 2010 May 12.
7
pBaSysBioII: an integrative plasmid generating gfp transcriptional fusions for high-throughput analysis of gene expression in Bacillus subtilis.
Microbiology (Reading). 2010 Jun;156(Pt 6):1600-1608. doi: 10.1099/mic.0.035758-0. Epub 2010 Feb 11.
8
Deciding fate in adverse times: sporulation and competence in Bacillus subtilis.
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21027-34. doi: 10.1073/pnas.0912185106. Epub 2009 Dec 7.
9
Hybrid stochastic simplifications for multiscale gene networks.
BMC Syst Biol. 2009 Sep 7;3:89. doi: 10.1186/1752-0509-3-89.
10
The transcriptional repressor CcpN from Bacillus subtilis uses different repression mechanisms at different promoters.
J Biol Chem. 2009 Oct 30;284(44):30032-8. doi: 10.1074/jbc.M109.033076. Epub 2009 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验