Haberl Helmut, Erb Karl-Heinz, Krausmann Fridolin, Bondeau Alberte, Lauk Christian, Müller Christoph, Plutzar Christoph, Steinberger Julia K
Institute of Social Ecology, Alpen-Adria Universität Klagenfurt - Wien - Graz, Schottenfeldgasse 29, 1070 Vienna, Austria.
Biomass Bioenergy. 2011 Dec;35(12):4753-4769. doi: 10.1016/j.biombioe.2011.04.035.
There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a "food first" approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios for the year 2050 based on a consistent representation of FAO projections of future agricultural development in a global biomass balance model. The model discerns 11 regions, 10 crop aggregates, 2 livestock aggregates, and 10 food aggregates. It incorporates detailed accounts of land use, global net primary production (NPP) and its human appropriation as well as socioeconomic biomass flow balances for the year 2000 that are modified according to a set of scenario assumptions to derive the biomass potential for 2050. We calculate the amount of biomass required to feed humans and livestock, considering losses between biomass supply and provision of final products. Based on this biomass balance as well as on global land-use data, we evaluate the potential to grow bioenergy crops and estimate the residue potentials from cropland (forestry is outside the scope of this study). We assess the sensitivity of the biomass potential to assumptions on diets, agricultural yields, cropland expansion and climate change. We use the dynamic global vegetation model LPJmL to evaluate possible impacts of changes in temperature, precipitation, and elevated CO(2) on agricultural yields. We find that the gross (primary) bioenergy potential ranges from 64 to 161 EJ y(-1), depending on climate impact, yields and diet, while the dependency on cropland expansion is weak. We conclude that food requirements for a growing world population, in particular feed required for livestock, strongly influence bioenergy potentials, and that integrated approaches are needed to optimize food and bioenergy supply.
人们越来越认识到,必须更好地理解农业、粮食、生物能源和气候变化之间的相互关系,以便对未来生物能源潜力作出更现实的估计。本文采用“粮食优先”方法,估算了2050年全球生物能源潜力。它基于粮农组织对未来农业发展的预测在全球生物质平衡模型中的一致表示,提出了2050年综合的粮食、牲畜、农业和生物能源情景。该模型区分11个区域、10种作物集合、2种牲畜集合和10种粮食集合。它纳入了2000年土地利用、全球净初级生产(NPP)及其人类占用情况以及社会经济生物质流平衡的详细账目,并根据一组情景假设进行修改,以得出2050年的生物质潜力。我们计算了养活人类和牲畜所需的生物量,同时考虑了生物质供应与最终产品供应之间的损失。基于这种生物质平衡以及全球土地利用数据,我们评估了种植生物能源作物的潜力,并估算了农田的残余潜力(林业不在本研究范围内)。我们评估了生物质潜力对饮食、农业产量、农田扩张和气候变化假设的敏感性。我们使用动态全球植被模型LPJmL来评估温度、降水和二氧化碳浓度升高变化对农业产量的可能影响。我们发现,总(初级)生物能源潜力在64至161艾焦/年之间,具体取决于气候影响、产量和饮食,而对农田扩张的依赖性较弱。我们得出结论,不断增长的世界人口的粮食需求,特别是牲畜所需的饲料,对生物能源潜力有很大影响,需要采用综合方法来优化粮食和生物能源供应。