Suppr超能文献

检测动态脑网络中多元相位耦合的事件相关变化。

Detecting event-related changes of multivariate phase coupling in dynamic brain networks.

机构信息

Dept. of Electrical Engineering and Computer Sciences, Univ. of California, Berkeley 754 Sutardja Dai Hall, MC 1764, Berkeley, CA 94720, USA.

出版信息

J Neurophysiol. 2012 Apr;107(7):2020-31. doi: 10.1152/jn.00610.2011. Epub 2012 Jan 11.

Abstract

Oscillatory phase coupling within large-scale brain networks is a topic of increasing interest within systems, cognitive, and theoretical neuroscience. Evidence shows that brain rhythms play a role in controlling neuronal excitability and response modulation (Haider B, McCormick D. Neuron 62: 171-189, 2009) and regulate the efficacy of communication between cortical regions (Fries P. Trends Cogn Sci 9: 474-480, 2005) and distinct spatiotemporal scales (Canolty RT, Knight RT. Trends Cogn Sci 14: 506-515, 2010). In this view, anatomically connected brain areas form the scaffolding upon which neuronal oscillations rapidly create and dissolve transient functional networks (Lakatos P, Karmos G, Mehta A, Ulbert I, Schroeder C. Science 320: 110-113, 2008). Importantly, testing these hypotheses requires methods designed to accurately reflect dynamic changes in multivariate phase coupling within brain networks. Unfortunately, phase coupling between neurophysiological signals is commonly investigated using suboptimal techniques. Here we describe how a recently developed probabilistic model, phase coupling estimation (PCE; Cadieu C, Koepsell K Neural Comput 44: 3107-3126, 2010), can be used to investigate changes in multivariate phase coupling, and we detail the advantages of this model over the commonly employed phase-locking value (PLV; Lachaux JP, Rodriguez E, Martinerie J, Varela F. Human Brain Map 8: 194-208, 1999). We show that the N-dimensional PCE is a natural generalization of the inherently bivariate PLV. Using simulations, we show that PCE accurately captures both direct and indirect (network mediated) coupling between network elements in situations where PLV produces erroneous results. We present empirical results on recordings from humans and nonhuman primates and show that the PCE-estimated coupling values are different from those using the bivariate PLV. Critically on these empirical recordings, PCE output tends to be sparser than the PLVs, indicating fewer significant interactions and perhaps a more parsimonious description of the data. Finally, the physical interpretation of PCE parameters is straightforward: the PCE parameters correspond to interaction terms in a network of coupled oscillators. Forward modeling of a network of coupled oscillators with parameters estimated by PCE generates synthetic data with statistical characteristics identical to empirical signals. Given these advantages over the PLV, PCE is a useful tool for investigating multivariate phase coupling in distributed brain networks.

摘要

在系统神经科学、认知神经科学和理论神经科学中,大脑网络的震荡相位耦合是一个日益受到关注的课题。有证据表明,脑节律在控制神经元兴奋性和响应调节方面发挥着重要作用(Haider B, McCormick D. Neuron 62: 171-189, 2009),并调节皮质区域之间的信息传递效率(Fries P. Trends Cogn Sci 9: 474-480, 2005)和不同的时空尺度(Canolty RT, Knight RT. Trends Cogn Sci 14: 506-515, 2010)。从这个角度来看,解剖学上连接的大脑区域构成了神经元震荡快速产生和溶解瞬时功能网络的支架(Lakatos P, Karmos G, Mehta A, Ulbert I, Schroeder C. Science 320: 110-113, 2008)。重要的是,检验这些假设需要设计方法来准确反映大脑网络中多元相位耦合的动态变化。不幸的是,神经生理信号之间的相位耦合通常使用次优技术进行研究。在这里,我们描述了一种最近开发的概率模型,相位耦合估计(PCE;Cadieu C, Koepsell K Neural Comput 44: 3107-3126, 2010),如何用于研究多元相位耦合的变化,我们详细介绍了该模型相对于常用的相位锁定值(PLV;Lachaux JP, Rodriguez E, Martinerie J, Varela F. Human Brain Map 8: 194-208, 1999)的优势。我们表明,N 维 PCE 是固有二元 PLV 的自然推广。通过模拟,我们表明,在 PLV 产生错误结果的情况下,PCE 准确地捕捉了网络元素之间的直接和间接(网络介导)耦合。我们展示了来自人类和非人灵长类动物记录的实验结果,并表明使用 PCE 估计的耦合值与使用二元 PLV 的耦合值不同。在这些实证记录中,关键是 PCE 的输出比 PLV 稀疏,这表明交互作用较少,或许对数据的描述更简洁。最后,PCE 参数的物理解释是直接的:PCE 参数对应于耦合振荡器网络中的交互项。使用由 PCE 估计的参数对耦合振荡器网络进行正向建模,可以生成具有与经验信号相同统计特征的合成数据。鉴于 PCE 在 PLV 上的这些优势,它是研究分布式大脑网络中多元相位耦合的有用工具。

相似文献

引用本文的文献

3
The Functional Role of Thalamocortical Coupling in the Human Motor Network.丘脑皮质耦合在人类运动网络中的功能作用。
J Neurosci. 2019 Oct 9;39(41):8124-8134. doi: 10.1523/JNEUROSCI.1153-19.2019. Epub 2019 Aug 30.
5
Neuroplasticity subserving the operation of brain-machine interfaces.支持脑机接口运作的神经可塑性。
Neurobiol Dis. 2015 Nov;83:161-71. doi: 10.1016/j.nbd.2015.05.001. Epub 2015 May 9.

本文引用的文献

2
The functional role of cross-frequency coupling.跨频率耦合的功能作用。
Trends Cogn Sci. 2010 Nov;14(11):506-15. doi: 10.1016/j.tics.2010.09.001.
3
Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies.振荡相位耦合协调解剖上分散的功能细胞组件。
Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17356-61. doi: 10.1073/pnas.1008306107. Epub 2010 Sep 20.
4
Emergence of a stable cortical map for neuroprosthetic control.用于神经假体控制的稳定皮质图谱的出现。
PLoS Biol. 2009 Jul;7(7):e1000153. doi: 10.1371/journal.pbio.1000153. Epub 2009 Jul 21.
6
Spatiotemporal dynamics of word processing in the human brain.人类大脑中词汇处理的时空动态
Front Neurosci. 2007 Oct 15;1(1):185-96. doi: 10.3389/neuro.01.1.1.014.2007. eCollection 2007 Nov.
8
Efficient auditory coding.高效听觉编码
Nature. 2006 Feb 23;439(7079):978-82. doi: 10.1038/nature04485.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验