文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多功能纳米颗粒在癌症成像与治疗中的靶向策略

Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy.

作者信息

Yu Mi Kyung, Park Jinho, Jon Sangyong

机构信息

Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, 261 Chemdangwagi-ro, Gwangju 500-712, Republic of Korea.

出版信息

Theranostics. 2012;2(1):3-44. doi: 10.7150/thno.3463. Epub 2012 Jan 1.


DOI:10.7150/thno.3463
PMID:22272217
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3263514/
Abstract

Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications.

摘要

纳米材料为癌症诊断和治疗提供了新的机遇。具有靶向、成像、治疗等多种功能的多功能纳米粒子已得到深入研究,旨在克服传统癌症诊断和治疗的局限性。在各种纳米粒子中,具有超顺磁性的磁性氧化铁纳米粒子已显示出作为多功能纳米粒子用于临床转化的潜力,因为它们已在临床上用作磁共振成像(MRI)造影剂,并且通过包含靶向部分、荧光染料或治疗剂可以轻松调整其特性。本文综述了构建多功能纳米粒子(包括基于磁性纳米粒子的诊疗系统)的靶向策略,以及纳米粒子用于体内应用的各种表面工程策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/3075673bc3f9/thnov02p0003g23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/f5838919b1f8/thnov02p0003g02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/751f8bf0dbdd/thnov02p0003g03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/3ec52ee95b12/thnov02p0003g04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/c266b4bc543f/thnov02p0003g05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/04a59e49fadd/thnov02p0003g06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/a6420c26b8df/thnov02p0003g07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/c17063f7b658/thnov02p0003g08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/55b95a3c83e8/thnov02p0003g09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/2aa49075a241/thnov02p0003g10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/292fea6f7cbc/thnov02p0003g11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/eda6abebbd4f/thnov02p0003g16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/657f5de28301/thnov02p0003g17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/1a2b9b82acfe/thnov02p0003g18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/11fa92706847/thnov02p0003g19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/b9a07f33f8f9/thnov02p0003g20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/733ffed0b854/thnov02p0003g21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/21976ecc1d8b/thnov02p0003g22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/3075673bc3f9/thnov02p0003g23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/f5838919b1f8/thnov02p0003g02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/751f8bf0dbdd/thnov02p0003g03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/3ec52ee95b12/thnov02p0003g04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/c266b4bc543f/thnov02p0003g05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/04a59e49fadd/thnov02p0003g06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/a6420c26b8df/thnov02p0003g07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/c17063f7b658/thnov02p0003g08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/55b95a3c83e8/thnov02p0003g09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/2aa49075a241/thnov02p0003g10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/292fea6f7cbc/thnov02p0003g11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/eda6abebbd4f/thnov02p0003g16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/657f5de28301/thnov02p0003g17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/1a2b9b82acfe/thnov02p0003g18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/11fa92706847/thnov02p0003g19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/b9a07f33f8f9/thnov02p0003g20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/733ffed0b854/thnov02p0003g21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/21976ecc1d8b/thnov02p0003g22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ae/3263514/3075673bc3f9/thnov02p0003g23.jpg

相似文献

[1]
Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy.

Theranostics. 2012

[2]
Surface engineering of iron oxide nanoparticles for targeted cancer therapy.

Acc Chem Res. 2011-4-29

[3]
Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics.

Theranostics. 2020

[4]
Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy.

Acc Chem Res. 2011-5-6

[5]
Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy.

Acta Biomater. 2020-1-15

[6]
Multifunctional Iron Oxide Magnetic Nanoparticles for Biomedical Applications: A Review.

Materials (Basel). 2022-1-10

[7]
Multifunctional Nanomaterials and Their Applications in Drug Delivery and Cancer Therapy.

Nanomaterials (Basel). 2015-10-14

[8]
Surface Engineering of Nanoparticles toward Cancer Theranostics.

Acc Chem Res. 2023-7-4

[9]
Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects.

Nanoscale. 2016-7-11

[10]
Thermo-responsive Fluorescent Nanoparticles for Multimodal Imaging and Treatment of Cancers.

Nanotheranostics. 2020

引用本文的文献

[1]
Nanoparticles for Cancer Immunotherapy: Innovations and Challenges.

Pharmaceuticals (Basel). 2025-7-22

[2]
Nanoparticle-Based Delivery Strategies for Combating Drug Resistance in Cancer Therapeutics.

Cancers (Basel). 2025-8-11

[3]
Therapeutic potential of gold nanoparticles in cancer therapy: a comparative insight into synthesis overview and cellular mechanisms.

Med Oncol. 2025-7-10

[4]
Green synthesis of silver nanoparticles from extract, evaluation of antibacterial, antioxidant activity, cytotoxic effect on MCF-7 cell line.

MethodsX. 2025-5-10

[5]
Exploring the role of density functional theory in the design of gold nanoparticles for targeted drug delivery: a systematic review.

J Mol Model. 2025-6-10

[6]
Multifunctional Core-Shell Cobalt Oxide @ Carbon Nanodot Hybrid Conjugates for Imaging and Targeting A549 Cells.

ACS Appl Bio Mater. 2025-6-16

[7]
The Use of Plant Viral Nanoparticles in Cancer Biotherapy-A Review.

Viruses. 2025-2-1

[8]
Inorganic Nanoparticles-based Drug Delivery Systems for Neurodegenerative Diseases Therapy.

Curr Pharm Des. 2025

[9]
Cancer-targeted pro-theranostic bi-metallic organo-coordination nanoparticles.

Theranostics. 2025-1-1

[10]
Impact of irradiation conditions on therapy of Lewis lung carcinoma in mice using glucose-ethylenediamine carbon dots.

BMC Cancer. 2025-1-8

本文引用的文献

[1]
Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer.

Langmuir. 2001-5-1

[2]
Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy.

Biomaterials. 2011-7-2

[3]
A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy.

Pharmacol Res. 2011-6-22

[4]
Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation.

Acc Chem Res. 2011-6-21

[5]
Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging.

Adv Mater. 2008-5-5

[6]
Nanoparticles that communicate in vivo to amplify tumour targeting.

Nat Mater. 2011-6-19

[7]
Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles.

Small. 2011-6-7

[8]
Facile synthetic route for surface-functionalized magnetic nanoparticles: cell labeling and magnetic resonance imaging studies.

ACS Nano. 2011-6-6

[9]
FMN-coated fluorescent iron oxide nanoparticles for RCP-mediated targeting and labeling of metabolically active cancer and endothelial cells.

Biomaterials. 2011-5-24

[10]
Surface engineering of iron oxide nanoparticles for targeted cancer therapy.

Acc Chem Res. 2011-4-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索