Micro-Nano Innovations (MiNI) Laboratory, Biomedical Engineering, University of California, Davis, California 95616, USA.
Biomicrofluidics. 2011 Dec;5(4):46505-465059. doi: 10.1063/1.3670368. Epub 2011 Dec 14.
Three-dimensional microfluidics holds great promise for large-scale integration of versatile, digitalized, and multitasking fluidic manipulations for biological and clinical applications. Successful translation of microfluidic toolsets to these purposes faces persistent technical challenges, such as reliable system-level packaging, device assembly and alignment, and world-to-chip interface. In this paper, we extended our previously established fit-to-flow (F2F) world-to-chip interconnection scheme to a complete system-level assembly strategy that addresses the three-dimensional microfluidic integration on demand. The modular F2F assembly consists of an interfacial chip, pluggable alignment modules, and multiple monolithic layers of microfluidic channels, through which convoluted three-dimensional microfluidic networks can be easily assembled and readily sealed with the capability of reconfigurable fluid flow. The monolithic laser-micromachining process simplifies and standardizes the fabrication of single-layer pluggable polymeric modules, which can be mass-produced as the renowned Lego(®) building blocks. In addition, interlocking features are implemented between the plug-and-play microfluidic chips and the complementary alignment modules through the F2F assembly, resulting in facile and secure alignment with average misalignment of 45 μm. Importantly, the 3D multilayer microfluidic assembly has a comparable sealing performance as the conventional single-layer devices, providing an average leakage pressure of 38.47 kPa. The modular reconfigurability of the system-level reversible packaging concept has been demonstrated by re-routing microfluidic flows through interchangeable modular microchannel layers.
三维微流控技术在生物和临床应用中具有很大的应用潜力,可以大规模集成多功能、数字化和多任务的流体操作。为了实现这一目标,将微流控工具成功转化为这些应用,仍然面临着一些持续的技术挑战,例如可靠的系统级封装、器件组装和对准以及芯片与世界的接口。在本文中,我们将之前建立的适配流(F2F)芯片与世界的接口连接方案扩展到一个完整的系统级组装策略,以满足按需三维微流控集成的需求。模块化的 F2F 组装由一个接口芯片、可插拔的对准模块和多个单片微流道层组成,通过这些模块可以轻松组装复杂的三维微流道网络,并具有可重新配置的流体流动能力,以及易于密封的特点。单片激光微加工工艺简化并标准化了单层可插拔聚合物模块的制造,可以像著名的乐高(Lego(®))积木一样大规模生产。此外,通过 F2F 组装,插拔式微流控芯片和互补对准模块之间实现了互锁功能,从而实现了轻松、安全的对准,平均对准误差为 45 μm。重要的是,多层 3D 微流控组装与传统的单层器件具有相当的密封性能,平均泄漏压力为 38.47 kPa。通过可互换的模块化微通道层来重新路由微流,展示了系统级可逆封装概念的模块化可重构性。