Suppr超能文献

三维适配流微流控组装。

Three-dimensional fit-to-flow microfluidic assembly.

机构信息

Micro-Nano Innovations (MiNI) Laboratory, Biomedical Engineering, University of California, Davis, California 95616, USA.

出版信息

Biomicrofluidics. 2011 Dec;5(4):46505-465059. doi: 10.1063/1.3670368. Epub 2011 Dec 14.

Abstract

Three-dimensional microfluidics holds great promise for large-scale integration of versatile, digitalized, and multitasking fluidic manipulations for biological and clinical applications. Successful translation of microfluidic toolsets to these purposes faces persistent technical challenges, such as reliable system-level packaging, device assembly and alignment, and world-to-chip interface. In this paper, we extended our previously established fit-to-flow (F2F) world-to-chip interconnection scheme to a complete system-level assembly strategy that addresses the three-dimensional microfluidic integration on demand. The modular F2F assembly consists of an interfacial chip, pluggable alignment modules, and multiple monolithic layers of microfluidic channels, through which convoluted three-dimensional microfluidic networks can be easily assembled and readily sealed with the capability of reconfigurable fluid flow. The monolithic laser-micromachining process simplifies and standardizes the fabrication of single-layer pluggable polymeric modules, which can be mass-produced as the renowned Lego(®) building blocks. In addition, interlocking features are implemented between the plug-and-play microfluidic chips and the complementary alignment modules through the F2F assembly, resulting in facile and secure alignment with average misalignment of 45 μm. Importantly, the 3D multilayer microfluidic assembly has a comparable sealing performance as the conventional single-layer devices, providing an average leakage pressure of 38.47 kPa. The modular reconfigurability of the system-level reversible packaging concept has been demonstrated by re-routing microfluidic flows through interchangeable modular microchannel layers.

摘要

三维微流控技术在生物和临床应用中具有很大的应用潜力,可以大规模集成多功能、数字化和多任务的流体操作。为了实现这一目标,将微流控工具成功转化为这些应用,仍然面临着一些持续的技术挑战,例如可靠的系统级封装、器件组装和对准以及芯片与世界的接口。在本文中,我们将之前建立的适配流(F2F)芯片与世界的接口连接方案扩展到一个完整的系统级组装策略,以满足按需三维微流控集成的需求。模块化的 F2F 组装由一个接口芯片、可插拔的对准模块和多个单片微流道层组成,通过这些模块可以轻松组装复杂的三维微流道网络,并具有可重新配置的流体流动能力,以及易于密封的特点。单片激光微加工工艺简化并标准化了单层可插拔聚合物模块的制造,可以像著名的乐高(Lego(®))积木一样大规模生产。此外,通过 F2F 组装,插拔式微流控芯片和互补对准模块之间实现了互锁功能,从而实现了轻松、安全的对准,平均对准误差为 45 μm。重要的是,多层 3D 微流控组装与传统的单层器件具有相当的密封性能,平均泄漏压力为 38.47 kPa。通过可互换的模块化微通道层来重新路由微流,展示了系统级可逆封装概念的模块化可重构性。

相似文献

1
Three-dimensional fit-to-flow microfluidic assembly.
Biomicrofluidics. 2011 Dec;5(4):46505-465059. doi: 10.1063/1.3670368. Epub 2011 Dec 14.
2
Fit-to-Flow (F2F) interconnects: universal reversible adhesive-free microfluidic adaptors for lab-on-a-chip systems.
Lab Chip. 2011 Feb 21;11(4):727-32. doi: 10.1039/c0lc00384k. Epub 2010 Nov 25.
3
A reconfigurable stick-n-play modular microfluidic system using magnetic interconnects.
Lab Chip. 2016 Sep 21;16(19):3700-3707. doi: 10.1039/c6lc00741d.
4
3D printed Lego-like modular microfluidic devices based on capillary driving.
Biofabrication. 2018 Mar 12;10(3):035001. doi: 10.1088/1758-5090/aaadd3.
5
Optofluidic Modular Blocks for On-Demand and Open-Source Prototyping of Microfluidic Systems.
Small. 2018 Dec;14(52):e1802769. doi: 10.1002/smll.201802769. Epub 2018 Oct 30.
7
Desktop aligner for fabrication of multilayer microfluidic devices.
Rev Sci Instrum. 2015 Jul;86(7):075008. doi: 10.1063/1.4927197.
8
3D free-assembly modular microfluidics inspired by movable type printing.
Microsyst Nanoeng. 2023 Sep 11;9:111. doi: 10.1038/s41378-023-00585-1. eCollection 2023.
10
3D Printed Reconfigurable Modular Microfluidic System for Generating Gel Microspheres.
Micromachines (Basel). 2020 Feb 21;11(2):224. doi: 10.3390/mi11020224.

引用本文的文献

1
Advances in Nanoarchitectonics: A Review of "Static" and "Dynamic" Particle Assembly Methods.
Materials (Basel). 2024 Feb 24;17(5):1051. doi: 10.3390/ma17051051.
2
A portable and affordable aligner for the assembly of microfluidic devices.
HardwareX. 2022 Aug 27;12:e00348. doi: 10.1016/j.ohx.2022.e00348. eCollection 2022 Oct.
4
3D biofabrication of vascular networks for tissue regeneration: A report on recent advances.
J Pharm Anal. 2018 Oct;8(5):277-296. doi: 10.1016/j.jpha.2018.08.005. Epub 2018 Aug 28.
5
A reproducible method for m precision alignment of PDMS microchannels with on-chip electrodes using a mask aligner.
Biomicrofluidics. 2017 Dec 20;11(6):064111. doi: 10.1063/1.5001145. eCollection 2017 Nov.
6
Desktop aligner for fabrication of multilayer microfluidic devices.
Rev Sci Instrum. 2015 Jul;86(7):075008. doi: 10.1063/1.4927197.
8
Reconfigurable microfluidics combined with antibody microarrays for enhanced detection of T-cell secreted cytokines.
Biomicrofluidics. 2013 Mar 14;7(2):24105. doi: 10.1063/1.4795423. eCollection 2013.
9
A microfluidic D-subminiature connector.
Lab Chip. 2013 Jun 7;13(11):2036-2039. doi: 10.1039/c3lc50201e.
10
Microfluidic system for facilitated quantification of nanoparticle accumulation to cells under laminar flow.
Ann Biomed Eng. 2013 Jan;41(1):89-99. doi: 10.1007/s10439-012-0634-0. Epub 2012 Aug 2.

本文引用的文献

1
Universal nanopatternable interfacial bonding.
Adv Mater. 2011 Dec 8;23(46):5551-6. doi: 10.1002/adma.201102827. Epub 2011 Oct 26.
2
Flexible casting of modular self-aligning microfluidic assembly blocks.
Lab Chip. 2011 May 7;11(9):1679-87. doi: 10.1039/c0lc00517g. Epub 2011 Mar 16.
3
Capillary-driven automatic packaging.
Lab Chip. 2011 Apr 21;11(8):1464-9. doi: 10.1039/c0lc00710b. Epub 2011 Mar 7.
4
From cleanroom to desktop: emerging micro-nanofabrication technology for biomedical applications.
Ann Biomed Eng. 2011 Feb;39(2):600-20. doi: 10.1007/s10439-010-0218-9. Epub 2010 Dec 14.
5
Stereomask lithography (SML): a universal multi-object micro-patterning technique for biological applications.
Lab Chip. 2011 Jan 21;11(2):224-30. doi: 10.1039/c0lc00275e. Epub 2010 Nov 26.
6
Fit-to-Flow (F2F) interconnects: universal reversible adhesive-free microfluidic adaptors for lab-on-a-chip systems.
Lab Chip. 2011 Feb 21;11(4):727-32. doi: 10.1039/c0lc00384k. Epub 2010 Nov 25.
7
Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
Lab Chip. 2010 Dec 7;10(23):3271-6. doi: 10.1039/c0lc00173b. Epub 2010 Oct 8.
9
Fabrication of reversibly adhesive fluidic devices using magnetism.
Lab Chip. 2009 Oct 21;9(20):3016-9. doi: 10.1039/b907957b. Epub 2009 Jul 22.
10
Direct projection on dry-film photoresist (DP(2)): do-it-yourself three-dimensional polymer microfluidics.
Lab Chip. 2009 Apr 21;9(8):1128-32. doi: 10.1039/b817925e. Epub 2009 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验