Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
Ann Biomed Eng. 2013 Jan;41(1):89-99. doi: 10.1007/s10439-012-0634-0. Epub 2012 Aug 2.
The identification of novel, synthetic targeting ligands to endothelial receptors has led to the rapid development of targeted nanoparticles for drug, gene and imaging probe delivery. Central to development and optimization are effective models for assessing particle binding in vitro. Here, we developed a simple and cost effective method to quantitatively assess nanoparticle accumulation under physiologically-relevant laminar flow. We designed reversibly vacuum-sealed PDMS microfluidic chambers compatible with 35 mm petri dishes, which deliver uniform or gradient shear stress. These chambers have sufficient surface area for facile cell collection for particle accumulation quantitation through FACS. We tested this model by synthesizing and flowing liposomes coated with APN (K (D) ~ 300 μM) and VCAM-1-targeting (K (D) ~ 30 μM) peptides over HUVEC. Particle binding significantly increased with ligand concentration (up to 6 mol%) and decreased with excess PEG. While the accumulation of particles with the lower affinity ligand decreased with shear, accumulation of those with the higher affinity ligand was highest in a low shear environment (2.4 dyne/cm(2)), as compared with greater shear or the absence of shear. We describe here a robust flow chamber model that is applied to optimize the properties of 100 nm liposomes targeted to inflamed endothelium.
鉴定新型、合成的内皮细胞受体靶向配体,促进了靶向纳米颗粒在药物、基因和成像探针递送方面的快速发展。开发和优化的核心是评估体外颗粒结合的有效模型。在这里,我们开发了一种简单且具有成本效益的方法,可在生理相关的层流条件下定量评估纳米颗粒的积累。我们设计了与 35mm 培养皿兼容的可重复使用的真空密封 PDMS 微流控室,可提供均匀或梯度剪切应力。这些腔室具有足够的表面积,可通过 FACS 轻松收集细胞以进行粒子积累定量。我们通过合成并流过覆盖有 APN(K (D) ~ 300 μM)和 VCAM-1 靶向(K (D) ~ 30 μM)肽的脂质体来测试该模型,该脂质体在 HUVEC 上。随着配体浓度的增加(高达 6 mol%),颗粒结合显著增加,而过量 PEG 则降低了颗粒结合。虽然低亲和力配体的颗粒积累随剪切力的增加而减少,但高亲和力配体的颗粒积累在低剪切环境(2.4 达因/平方厘米)中最高,而在较大剪切力或无剪切力的情况下则较低。我们在这里描述了一种稳健的流动室模型,该模型可用于优化靶向炎症内皮细胞的 100nm 脂质体的性质。