根据传染病监测数据估算绝对和相对病死率。

Estimating absolute and relative case fatality ratios from infectious disease surveillance data.

作者信息

Reich Nicholas G, Lessler Justin, Cummings Derek A T, Brookmeyer Ron

机构信息

Division of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Massachusetts 01002, USA.

出版信息

Biometrics. 2012 Jun;68(2):598-606. doi: 10.1111/j.1541-0420.2011.01709.x. Epub 2012 Jan 25.

Abstract

Knowing which populations are most at risk for severe outcomes from an emerging infectious disease is crucial in deciding the optimal allocation of resources during an outbreak response. The case fatality ratio (CFR) is the fraction of cases that die after contracting a disease. The relative CFR is the factor by which the case fatality in one group is greater or less than that in a second group. Incomplete reporting of the number of infected individuals, both recovered and dead, can lead to biased estimates of the CFR. We define conditions under which the CFR and the relative CFR are identifiable. Furthermore, we propose an estimator for the relative CFR that controls for time-varying reporting rates. We generalize our methods to account for elapsed time between infection and death. To demonstrate the new methodology, we use data from the 1918 influenza pandemic to estimate relative CFRs between counties in Maryland. A simulation study evaluates the performance of the methods in outbreak scenarios. An R software package makes the methods and data presented here freely available. Our work highlights the limitations and challenges associated with estimating absolute and relative CFRs in practice. However, in certain situations, the methods presented here can help identify vulnerable subpopulations early in an outbreak of an emerging pathogen such as pandemic influenza.

摘要

了解哪些人群最易因新发传染病出现严重后果,对于在疫情应对期间决定资源的最优分配至关重要。病死率(CFR)是感染疾病后死亡病例的比例。相对病死率是一组的病死率高于或低于另一组病死率的倍数。已康复和死亡的感染个体数量报告不完整,可能导致对病死率的估计出现偏差。我们定义了病死率和相对病死率可识别的条件。此外,我们提出了一种控制随时间变化的报告率的相对病死率估计方法。我们将方法进行推广,以考虑感染与死亡之间的时间间隔。为了展示新方法,我们使用1918年流感大流行的数据来估计马里兰州各县之间的相对病死率。一项模拟研究评估了这些方法在疫情场景中的性能。一个R软件包使这里介绍的方法和数据可免费获取。我们的工作突出了在实际中估计绝对和相对病死率所面临的局限性和挑战。然而,在某些情况下,这里介绍的方法有助于在大流行性流感等新发病原体疫情早期识别出脆弱亚人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f25f/7188330/d463a9a18496/BIOM-68-598-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索