Suppr超能文献

利用详细的结合位点可及性和蛋白质组学数据上的机器学习进行精确的微小RNA靶标预测。

Accurate microRNA Target Prediction Using Detailed Binding Site Accessibility and Machine Learning on Proteomics Data.

作者信息

Reczko Martin, Maragkakis Manolis, Alexiou Panagiotis, Papadopoulos Giorgio L, Hatzigeorgiou Artemis G

机构信息

Institute of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming" Vari, Greece.

出版信息

Front Genet. 2012 Jan 18;2:103. doi: 10.3389/fgene.2011.00103. eCollection 2011.

Abstract

MicroRNAs (miRNAs) are a class of small regulatory genes regulating gene expression by targeting messenger RNA. Though computational methods for miRNA target prediction are the prevailing means to analyze their function, they still miss a large fraction of the targeted genes and additionally predict a large number of false positives. Here we introduce a novel algorithm called DIANA-microT-ANN which combines multiple novel target site features through an artificial neural network (ANN) and is trained using recently published high-throughput data measuring the change of protein levels after miRNA overexpression, providing positive and negative targeting examples. The features characterizing each miRNA recognition element include binding structure, conservation level, and a specific profile of structural accessibility. The ANN is trained to integrate the features of each recognition element along the 3'untranslated region into a targeting score, reproducing the relative repression fold change of the protein. Tested on two different sets the algorithm outperforms other widely used algorithms and also predicts a significant number of unique and reliable targets not predicted by the other methods. For 542 human miRNAs DIANA-microT-ANN predicts 120000 targets not provided by TargetScan 5.0. The algorithm is freely available at http://microrna.gr/microT-ANN.

摘要

微小RNA(miRNA)是一类通过靶向信使核糖核酸来调控基因表达的小调控基因。尽管用于miRNA靶标预测的计算方法是分析其功能的主要手段,但它们仍然遗漏了很大一部分靶基因,并且还预测出大量假阳性结果。在此,我们介绍一种名为DIANA-microT-ANN的新算法,该算法通过人工神经网络(ANN)整合多种新的靶位点特征,并使用最近发表的高通量数据进行训练,这些数据测量了miRNA过表达后蛋白质水平的变化,提供了正向和负向靶向实例。表征每个miRNA识别元件的特征包括结合结构、保守水平以及结构可及性的特定概况。训练ANN将沿着3'非翻译区的每个识别元件的特征整合为一个靶向分数,重现蛋白质的相对抑制倍数变化。在两组不同的数据上进行测试时,该算法优于其他广泛使用的算法,并且还预测出大量其他方法未预测到的独特且可靠的靶标。对于542个人类miRNA,DIANA-microT-ANN预测出了TargetScan 5.0未提供的120000个靶标。该算法可在http://microrna.gr/microT-ANN上免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3265086/79c608c8f61f/fgene-02-00103-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验