Helen Wills Neuroscience Institute, University of California Berkeley, CA, USA.
Front Comput Neurosci. 2011 Nov 28;5:52. doi: 10.3389/fncom.2011.00052. eCollection 2011.
The growing use of multi-channel neural recording techniques in behaving animals has produced rich datasets that hold immense potential for advancing our understanding of how the brain mediates behavior. One limitation of these techniques is they do not provide important information about the underlying anatomical connections among the recorded neurons within an ensemble. Inferring these connections is often intractable because the set of possible interactions grows exponentially with ensemble size. This is a fundamental challenge one confronts when interpreting these data. Unfortunately, the combination of expert knowledge and ensemble data is often insufficient for selecting a unique model of these interactions. Our approach shifts away from modeling the network diagram of the ensemble toward analyzing changes in the dynamics of the ensemble as they relate to behavior. Our contribution consists of adapting techniques from signal processing and Bayesian statistics to track the dynamics of ensemble data on time-scales comparable with behavior. We employ a Bayesian estimator to weigh prior information against the available ensemble data, and use an adaptive quantization technique to aggregate poorly estimated regions of the ensemble data space. Importantly, our method is capable of detecting changes in both the magnitude and structure of correlations among neurons missed by firing rate metrics. We show that this method is scalable across a wide range of time-scales and ensemble sizes. Lastly, the performance of this method on both simulated and real ensemble data is used to demonstrate its utility.
多通道神经记录技术在行为动物中的应用日益广泛,产生了丰富的数据集,为深入了解大脑如何介导行为提供了巨大的潜力。这些技术的一个局限性是,它们不能提供关于记录神经元在集合内的潜在解剖连接的重要信息。推断这些连接通常是棘手的,因为可能的相互作用的集合随集合大小呈指数增长。这是在解释这些数据时面临的一个基本挑战。不幸的是,专家知识和集合数据的结合通常不足以选择这些相互作用的唯一模型。我们的方法从对集合的网络图建模转向分析与行为相关的集合动态变化。我们的贡献包括从信号处理和贝叶斯统计中采用技术来跟踪与行为可比时间尺度上的集合数据的动态。我们使用贝叶斯估计器来权衡先验信息与可用的集合数据,以及使用自适应量化技术来聚合集合数据空间中估计不佳的区域。重要的是,我们的方法能够检测到神经元之间相关性的幅度和结构的变化,而这些变化是由放电率指标错过的。我们表明,这种方法在广泛的时间尺度和集合大小范围内都具有可扩展性。最后,该方法在模拟和真实集合数据上的性能用于演示其效用。