Suppr超能文献

优化 miRNA 靶基因预测中的保守性和可及性过滤器的使用。

Optimal use of conservation and accessibility filters in microRNA target prediction.

机构信息

Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

出版信息

PLoS One. 2012;7(2):e32208. doi: 10.1371/journal.pone.0032208. Epub 2012 Feb 27.

Abstract

It is generally accepted that filtering microRNA (miRNA) target predictions by conservation or by accessibility can reduce the false discovery rate. However, these two strategies are usually not exploited in a combined and flexible manner. Here, we introduce PACCMIT, a flexible method that filters miRNA binding sites by their conservation, accessibility, or both. The improvement in performance obtained with each of these three filters is demonstrated on the prediction of targets for both i) highly and ii) weakly conserved miRNAs, i.e., in two scenarios in which the miRNA-target interactions are subjected to different evolutionary pressures. We show that in the first scenario conservation is a better filter than accessibility (as both sensitivity and precision are higher among the top predictions) and that the combined filter improves performance of PACCMIT even further. In the second scenario, on the other hand, the accessibility filter performs better than both the conservation and combined filters, suggesting that the site conservation is not equally effective in rejecting false positive predictions for all miRNAs. Regarding the quality of the ranking criterion proposed by Robins and Press and used in PACCMIT, it is shown that top ranking interactions correspond to more downregulated proteins than do the lower ranking interactions. Comparison with several other target prediction algorithms shows that the ranking of predictions provided by PACCMIT is at least as good as the ranking generated by other conservation-based methods and considerably better than the energy-based ranking used in other accessibility-based methods.

摘要

普遍认为,通过保守性或可及性来过滤 miRNA(miRNA)靶标预测可以降低假发现率。然而,这两种策略通常不会以组合和灵活的方式进行利用。在这里,我们引入了 PACCMIT,这是一种通过保守性、可及性或两者兼用来过滤 miRNA 结合位点的灵活方法。这三种过滤器中的每一种在预测高度和低度保守 miRNA 的靶标时都能提高性能,即在 miRNA-靶标相互作用受到不同进化压力的两种情况下。我们表明,在第一种情况下,保守性是比可及性更好的过滤器(因为在顶级预测中,敏感性和精确性都更高),并且组合过滤器甚至进一步提高了 PACCMIT 的性能。另一方面,在第二种情况下,可及性过滤器的性能优于保守性和组合过滤器,这表明在拒绝所有 miRNA 的假阳性预测时,位点保守性并不对所有 miRNA 都同样有效。关于 Robins 和 Press 提出并用于 PACCMIT 的排名标准的质量,我们表明,排名较高的相互作用对应于更多下调的蛋白质,而排名较低的相互作用则不然。与其他几种靶标预测算法的比较表明,PACCMIT 提供的预测排名至少与其他基于保守性的方法生成的排名一样好,并且比其他基于可及性的方法中使用的基于能量的排名要好得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e20/3288066/5f1325c4ccb7/pone.0032208.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验