Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany.
G3 (Bethesda). 2012 Feb;2(2):261-70. doi: 10.1534/g3.111.001479. Epub 2012 Feb 1.
The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.
通过 Illumina/Solexa 全基因组测序鉴定丝状真菌 Sordaria macrospora 发育突变体中的缺陷基因
研究突变体以阐明基因功能具有悠久而成功的历史;然而,要发现通过随机诱变产生的突变体中的因果突变,通常需要多年的实验室工作,并且需要先前生成的遗传和/或物理标记,或者像 DNA 文库这样的资源用于互补。在这里,我们提出了一种通过 Illumina/Solexa 全基因组测序鉴定丝状真菌 Sordaria macrospora 发育突变体中缺陷基因的替代方法。我们对三个突变体和野生型杂交后代的混合 DNA 进行了测序,并通过生物信息学分析能够精确定位突变菌株中的因果突变。一个突变体是孢子颜色突变体,突变基因编码黑色素生物合成酶。因果突变是内含子第一个碱基的 G 到 A 变化,导致剪接缺陷。第二个突变体携带编码对有性发育至关重要的蛋白质的 pro41 基因的等位基因突变。在突变体中,我们在 pro41 基因座检测到复杂的缺失/重排模式。在第三个突变体中,转录因子编码基因的终止密码子点突变导致未成熟的子实体产生。对于所有突变体,用受影响基因的野生型拷贝转化都恢复了野生型表型。我们的数据表明,即使没有先前的图谱信息,对突变株进行全基因组测序也是一种快速鉴定可遗传杂交且具有参考基因组序列的生物体中发育基因的方法。