Suppr超能文献

从化学物质的结构描述符和短期生物测定结果预测其体内效应的综合方法。

Integrative approaches for predicting in vivo effects of chemicals from their structural descriptors and the results of short-term biological assays.

作者信息

Low Yen Sia, Sedykh Alexander Yeugenyevich, Rusyn Ivan, Tropsha Alexander

机构信息

100K Beard Hall, Campus Box 7568, University of North Carolina, Chapel Hill, NC 27599-7568, USA.

出版信息

Curr Top Med Chem. 2014;14(11):1356-64. doi: 10.2174/1568026614666140506121116.

Abstract

Cheminformatics approaches such as Quantitative Structure Activity Relationship (QSAR) modeling have been used traditionally for predicting chemical toxicity. In recent years, high throughput biological assays have been increasingly employed to elucidate mechanisms of chemical toxicity and predict toxic effects of chemicals in vivo. The data generated in such assays can be considered as biological descriptors of chemicals that can be combined with molecular descriptors and employed in QSAR modeling to improve the accuracy of toxicity prediction. In this review, we discuss several approaches for integrating chemical and biological data for predicting biological effects of chemicals in vivo and compare their performance across several data sets. We conclude that while no method consistently shows superior performance, the integrative approaches rank consistently among the best yet offer enriched interpretation of models over those built with either chemical or biological data alone. We discuss the outlook for such interdisciplinary methods and offer recommendations to further improve the accuracy and interpretability of computational models that predict chemical toxicity.

摘要

诸如定量构效关系(QSAR)建模等化学信息学方法传统上一直用于预测化学毒性。近年来,高通量生物学检测越来越多地被用于阐明化学毒性机制并预测化学物质在体内的毒性作用。此类检测中产生的数据可被视为化学物质的生物学描述符,这些描述符可与分子描述符相结合,并用于QSAR建模以提高毒性预测的准确性。在本综述中,我们讨论了几种整合化学和生物学数据以预测化学物质在体内生物学效应的方法,并在多个数据集上比较了它们的性能。我们得出结论,虽然没有一种方法始终表现出卓越的性能,但整合方法始终位列最佳方法之中,并且与仅基于化学或生物学数据构建的模型相比,能提供更丰富的模型解释。我们讨论了此类跨学科方法的前景,并提出建议以进一步提高预测化学毒性的计算模型的准确性和可解释性。

相似文献

2
5
From QSAR to QSIIR: searching for enhanced computational toxicology models.
Methods Mol Biol. 2013;930:53-65. doi: 10.1007/978-1-62703-059-5_3.
6
QSAR Modeling of ToxCast Assays Relevant to the Molecular Initiating Events of AOPs Leading to Hepatic Steatosis.
J Chem Inf Model. 2018 Aug 27;58(8):1501-1517. doi: 10.1021/acs.jcim.8b00297. Epub 2018 Jul 26.
9
Outliers: their origin and use in the classification of molecular mechanisms of toxicity.
Sci Total Environ. 1991 Dec;109-110:131-53. doi: 10.1016/0048-9697(91)90175-e.

引用本文的文献

1
Towards the sustainable discovery and development of new antibiotics.
Nat Rev Chem. 2021 Oct;5(10):726-749. doi: 10.1038/s41570-021-00313-1. Epub 2021 Aug 19.
2
Towards the sustainable discovery and development of new antibiotics.
Nat Rev Chem. 2021;5(10):726-749. doi: 10.1038/s41570-021-00313-1. Epub 2021 Aug 19.
5
Conditional Toxicity Value (CTV) Predictor: An Approach for Generating Quantitative Risk Estimates for Chemicals.
Environ Health Perspect. 2018 May 29;126(5):057008. doi: 10.1289/EHP2998. eCollection 2018 May.
9
Cheminformatics-aided pharmacovigilance: application to Stevens-Johnson Syndrome.
J Am Med Inform Assoc. 2016 Sep;23(5):968-78. doi: 10.1093/jamia/ocv127. Epub 2015 Oct 24.

本文引用的文献

1
Best Practices for QSAR Model Development, Validation, and Exploitation.
Mol Inform. 2010 Jul 12;29(6-7):476-88. doi: 10.1002/minf.201000061. Epub 2010 Jul 6.
2
Exploring the relationship between drug side-effects and therapeutic indications.
AMIA Annu Symp Proc. 2013 Nov 16;2013:1568-77. eCollection 2013.
3
Integrative chemical-biological read-across approach for chemical hazard classification.
Chem Res Toxicol. 2013 Aug 19;26(8):1199-208. doi: 10.1021/tx400110f. Epub 2013 Aug 5.
4
High-throughput models for exposure-based chemical prioritization in the ExpoCast project.
Environ Sci Technol. 2013 Aug 6;47(15):8479-88. doi: 10.1021/es400482g. Epub 2013 Jul 11.
6
Pharmacovigilance using clinical notes.
Clin Pharmacol Ther. 2013 Jun;93(6):547-55. doi: 10.1038/clpt.2013.47. Epub 2013 Mar 4.
7
Systems approaches in risk assessment.
Clin Pharmacol Ther. 2013 May;93(5):413-24. doi: 10.1038/clpt.2013.29. Epub 2013 Feb 11.
8
Adverse drug events: database construction and in silico prediction.
J Chem Inf Model. 2013 Apr 22;53(4):744-52. doi: 10.1021/ci4000079. Epub 2013 Apr 8.
9
Quantitative structure-activity relationship models of clinical pharmacokinetics: clearance and volume of distribution.
J Chem Inf Model. 2013 Apr 22;53(4):948-57. doi: 10.1021/ci400001u. Epub 2013 Mar 15.
10
Dynamic enhancement of drug product labels to support drug safety, efficacy, and effectiveness.
J Biomed Semantics. 2013 Jan 26;4(1):5. doi: 10.1186/2041-1480-4-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验