Suppr超能文献

一阶段部分亚硝化/厌氧氨氧化的微生物资源管理。

Microbial resource management of one-stage partial nitritation/anammox.

机构信息

Laboratory of Microbial Ecology and Technology, Ghent University, Gent, Belgium.

出版信息

Microb Biotechnol. 2012 May;5(3):433-48. doi: 10.1111/j.1751-7915.2012.00341.x. Epub 2012 Mar 27.

Abstract

About 30 full-scale partial nitritation/anammox plants are established, treating mostly sewage sludge reject water, landfill leachate or food processing digestate. Although two-stage and one-stage processes each have their advantages, the one-stage configuration is mostly applied, termed here as oxygen-limited autotrophic nitrification/denitrification (OLAND), and is the focus of this review. The OLAND application domain is gradually expanding, with technical-scale plants on source-separated domestic wastewater, pre-treated manure and sewage, and liquors from organic waste bioenergy plants. A 'microbial resource management' (MRM) OLAND framework was elaborated, showing how the OLAND engineer/operator (1: input) can design/steer the microbial community (2: biocatalyst) to obtain optimal functionality (3: output). In the physicochemical toolbox (1), design guidelines are provided, as well as advantages of different reactor technologies. Particularly the desirable aeration regime, feeding regime and shear forces are not clear yet. The development of OLAND trickling filters, membrane bioreactors and systems with immobilized biomass is awaited. The biocatalyst box (2) considers 'Who': biodiversity and its dynamic patterns, 'What': physiology, and 'Where': architecture creating substrate gradients. Particularly community dynamics and extracellular polymeric substances (EPS) still require insights. Performant OLAND (3) comprises fast start-up (storage possibility; fast growth of anammox bacteria), process stability (endured biomass retention; stress resilience), reasonable overall costs, high nitrogen removal efficiency and a low environmental footprint. Three important OLAND challenges are elaborated in detailed frameworks, demonstrating how to maximize nitrogen removal efficiency, minimize NO and N(2)O emissions and obtain through OLAND a plant-wide net energy gain from sewage treatment.

摘要

大约有 30 座全规模的部分硝化/厌氧氨氧化装置已经建立,主要用于处理污水污泥滤液、垃圾渗滤液或食品加工消化液。虽然两段式和一体式工艺各有优势,但一体式配置应用更为广泛,被称为限氧自养硝化/反硝化(OLAND),这也是本综述的重点。OLAND 的应用领域正在逐渐扩大,包括针对生活污水、预处理粪便和污水、有机废物生物能源厂废液的源头分离式技术规模的工厂。阐述了“微生物资源管理”(MRM)OLAND 框架,展示了 OLAND 工程师/运营商(1:输入)如何设计/控制微生物群落(2:生物催化剂)以获得最佳功能(3:输出)。在理化工具箱(1)中,提供了设计指南以及不同反应器技术的优势。特别是理想的曝气制度、进料制度和剪切力尚不清楚。OLAND 滴滤器、膜生物反应器和固定化生物量系统的开发正在等待中。生物催化剂箱(2)考虑了“谁”:生物多样性及其动态模式,“什么”:生理学,以及“哪里”:创造基质梯度的架构。特别是群落动态和胞外聚合物(EPS)仍然需要深入了解。高性能的 OLAND(3)包括快速启动(存储可能性;厌氧氨氧化菌的快速生长)、过程稳定性(耐受生物量保留;抗压能力)、合理的总成本、高氮去除效率和低环境足迹。详细框架阐述了三个重要的 OLAND 挑战,展示了如何最大限度地提高氮去除效率、最小化 NO 和 N2O 排放以及通过 OLAND 从污水处理中获得全厂净能源增益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9504/3821686/b040713ca671/mbt0005-0433-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验