Howard Hughes Medical Institute, Department of Biomedical Engineering, and Center for BioDynamics, Boston University, Boston, MA 02215, USA.
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5850-5. doi: 10.1073/pnas.1203808109. Epub 2012 Mar 27.
A key next step in synthetic biology is to combine simple circuits into higher-order systems. In this work, we expanded our synthetic riboregulation platform into a genetic switchboard that independently controls the expression of multiple genes in parallel. First, we designed and characterized riboregulator variants to complete the foundation of the genetic switchboard; then we constructed the switchboard sensor, a testing platform that reported on quorum-signaling molecules, DNA damage, iron starvation, and extracellular magnesium concentration in single cells. As a demonstration of the biotechnological potential of our synthetic device, we built a metabolism switchboard that regulated four metabolic genes, pgi, zwf, edd, and gnd, to control carbon flow through three Escherichia coli glucose-utilization pathways: the Embden-Meyerhof, Entner-Doudoroff, and pentose phosphate pathways. We provide direct evidence for switchboard-mediated shunting of metabolic flux by measuring mRNA levels of the riboregulated genes, shifts in the activities of the relevant enzymes and pathways, and targeted changes to the E. coli metabolome. The design, testing, and implementation of the genetic switchboard illustrate the successful construction of a higher-order system that can be used for a broad range of practical applications in synthetic biology and biotechnology.
合成生物学的关键下一步是将简单的电路组合成更高阶的系统。在这项工作中,我们将我们的合成核糖调控平台扩展为一个基因开关板,能够独立地并行控制多个基因的表达。首先,我们设计并表征了核糖调控变体,以完成基因开关板的基础;然后我们构建了开关板传感器,这是一个测试平台,可以报告群体感应分子、DNA 损伤、铁饥饿和细胞外镁浓度等信息。作为我们合成设备的生物技术潜力的展示,我们构建了一个代谢开关板,它可以调节四个代谢基因 pgi、zwf、edd 和 gnd,以控制三种大肠杆菌葡萄糖利用途径(Embden-Meyerhof、Entner-Doudoroff 和磷酸戊糖途径)中的碳流。我们通过测量核糖调控基因的 mRNA 水平、相关酶和途径的活性变化以及对大肠杆菌代谢组的靶向改变,提供了开关板介导的代谢通量分流的直接证据。基因开关板的设计、测试和实现说明了一个更高阶系统的成功构建,该系统可用于合成生物学和生物技术的广泛实际应用。