Suppr超能文献

基于体内高通量毒性筛选的工程纳米材料对斑马鱼胚胎进行自动表型识别。

Automated phenotype recognition for zebrafish embryo based in vivo high throughput toxicity screening of engineered nano-materials.

机构信息

Center for the Environmental Implications of Nanotechnology, California Nanosystems Institute, University of California Los Angeles, Los Angeles, California, United States of America.

出版信息

PLoS One. 2012;7(4):e35014. doi: 10.1371/journal.pone.0035014. Epub 2012 Apr 10.

Abstract

A phenotype recognition model was developed for high throughput screening (HTS) of engineered Nano-Materials (eNMs) toxicity using zebrafish embryo developmental response classified, from automatically captured images and without manual manipulation of zebrafish positioning, by three basic phenotypes (i.e., hatched, unhatched, and dead). The recognition model was built with a set of vectorial descriptors providing image color and texture information. The best performing model was attained with three image descriptors (color histogram, representative color, and color layout) identified as most suitable from an initial pool of six descriptors. This model had an average recognition accuracy of 97.40±0.95% in a 10-fold cross-validation and 93.75% in a stress test of low quality zebrafish images. The present work has shown that a phenotyping model can be developed with accurate recognition ability suitable for zebrafish-based HTS assays. Although the present methodology was successfully demonstrated for only three basic zebrafish embryonic phenotypes, it can be readily adapted to incorporate more subtle phenotypes.

摘要

建立了一个表型识别模型,用于使用斑马鱼胚胎发育反应对工程纳米材料(eNMs)毒性进行高通量筛选(HTS),该模型对自动捕获的图像进行分类,无需人工操纵斑马鱼的位置,分为三种基本表型(即孵化、未孵化和死亡)。该识别模型使用一组提供图像颜色和纹理信息的向量描述符构建。从最初的六个描述符中选择了三个最适合的图像描述符(颜色直方图、代表颜色和颜色布局),构建了性能最佳的模型。该模型在 10 折交叉验证中的平均识别准确率为 97.40±0.95%,在低质量斑马鱼图像的压力测试中的识别准确率为 93.75%。本研究表明,可以开发出具有准确识别能力的表型模型,适用于基于斑马鱼的 HTS 检测。尽管本方法仅成功地证明了三种基本的斑马鱼胚胎表型,但它可以很容易地适应于纳入更细微的表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e0b/3323610/d9c1ce5b44f8/pone.0035014.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验