Chatterjee Dev Kumar, Diagaradjane Parmeswaran, Krishnan Sunil
Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA.
Ther Deliv. 2011 Aug;2(8):1001-14. doi: 10.4155/tde.11.72.
A small rise in tumor temperature (hyperthermia) makes cancer cells more susceptible to radiation and chemotherapy. The means of achieving this is not trivial, and traditional methods have certain drawbacks. Loading tumors with systematically asministered energy-transducing nanoparticles can circumvent several of the obstacles to achieve tumor hyperthermia. However, nanoparticles also face unique challenges prior to clinical implementation. This article summarizes the state-of-the-art current technology and discusses the advantages and challenges of the three major nanoparticle formulations in focus: gold nanoshells and nanorods, superparamagnetic iron oxide particles and carbon nanotubes.
肿瘤温度的小幅升高(热疗)会使癌细胞对放疗和化疗更敏感。实现这一点的方法并非易事,传统方法存在一定缺陷。通过系统性给药的能量转换纳米颗粒使肿瘤负载,可以克服实现肿瘤热疗的若干障碍。然而,纳米颗粒在临床应用之前也面临独特的挑战。本文总结了当前的先进技术,并讨论了重点关注的三种主要纳米颗粒制剂的优缺点:金纳米壳和纳米棒、超顺磁性氧化铁颗粒以及碳纳米管。
Ther Deliv. 2011-8
Drug Discov Today. 2017-4-26
Nanomedicine (Lond). 2013-8
Curr Cancer Drug Targets. 2011-2
Int J Hyperthermia. 2013-12
J Cancer Res Clin Oncol. 2019-7-15
Int J Hyperthermia. 2016
Lasers Med Sci. 2008-7
Nanomedicine (Lond). 2013-10
Nanomaterials (Basel). 2025-8-6
Int J Numer Method Biomed Eng. 2025-8
Materials (Basel). 2025-1-9
J Food Drug Anal. 2024-12-15
Nanomaterials (Basel). 2024-7-28
Biomaterials. 2010-12-16
Magn Reson Imaging. 2010-12-8
J Phys Chem C Nanomater Interfaces. 2010-1-1
Int J Nanomedicine. 2010-8-9