Suppr超能文献

基于先进的办公型驾驶模拟器对驾驶表现进行持续测量,可以用来预测阻塞性睡眠呼吸暂停综合征患者在模拟任务中的失败。

Continuous measures of driving performance on an advanced office-based driving simulator can be used to predict simulator task failure in patients with obstructive sleep apnoea syndrome.

机构信息

Department of Respiratory Medicine, St James' University Hospital, Beckett Street, Leeds LS9 7TF, UK.

出版信息

Thorax. 2012 Sep;67(9):815-21. doi: 10.1136/thoraxjnl-2011-200699. Epub 2012 May 5.

Abstract

INTRODUCTION

Some patients with obstructive sleep apnoea syndrome are at higher risk of being involved in road traffic accidents. It has not been possible to identify this group from clinical and polysomnographic information or using simple simulators. We explore the possibility of identifying this group from variables generated in an advanced PC-based driving simulator.

METHODS

All patients performed a 90 km motorway driving simulation. Two events were programmed to trigger evasive actions, one subtle and an alert driver should not crash, while for the other, even a fully alert driver might crash. Simulator parameters including standard deviation of lane position (SDLP) and reaction times at the veer event (VeerRT) were recorded. There were three possible outcomes: 'fail', 'indeterminate' and 'pass'. An exploratory study identified the simulator parameters predicting a 'fail' by regression analysis and this was then validated prospectively.

RESULTS

72 patients were included in the exploratory phase and 133 patients in the validation phase. 65 (32%) patients completed the run without any incidents, 45 (22%) failed, 95 (46%) were indeterminate. Prediction models using SDLP and VeerRT could predict 'fails' with a sensitivity of 82% and specificity of 96%. The models were subsequently confirmed in the validation phase.

CONCLUSIONS

Using continuously measured variables it has been possible to identify, with a high degree of accuracy, a subset of patients with obstructive sleep apnoea syndrome who fail a simulated driving test. This has the potential to identify at-risk drivers and improve the reliability of a clinician's decision-making.

摘要

简介

一些阻塞性睡眠呼吸暂停综合征患者发生道路交通事故的风险较高。目前还无法从临床和多导睡眠图信息或使用简单的模拟器来识别出这类患者。我们试图从基于 PC 的高级驾驶模拟器中生成的变量来识别这一群体。

方法

所有患者均进行了 90 公里高速公路驾驶模拟。程序中设置了两个事件来触发避险动作,一个是微妙的情况,即使是警觉的司机也不应发生碰撞,而另一个则是即使是完全警觉的司机也可能发生碰撞。记录了模拟器参数,包括车道位置标准差(SDLP)和转向事件时的反应时间(VeerRT)。有三种可能的结果:“失败”、“不确定”和“通过”。一项探索性研究通过回归分析确定了预测“失败”的模拟器参数,然后对其进行前瞻性验证。

结果

探索性研究纳入 72 例患者,验证性研究纳入 133 例患者。65 例(32%)患者在无任何事故的情况下完成了测试,45 例(22%)患者失败,95 例(46%)患者结果不确定。使用 SDLP 和 VeerRT 的预测模型可以预测“失败”的敏感性为 82%,特异性为 96%。随后在验证阶段确认了这些模型。

结论

使用连续测量的变量,可以高度准确地识别出阻塞性睡眠呼吸暂停综合征患者中未能通过模拟驾驶测试的亚组。这有可能识别出高危驾驶员,并提高临床医生决策的可靠性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验