Howard Hughes Medical Institute, Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA.
Methods. 2013 Aug 15;62(3):268-78. doi: 10.1016/j.ymeth.2013.03.015. Epub 2013 Mar 21.
The zebrafish Danio rerio has emerged as a powerful vertebrate model system that lends itself particularly well to quantitative investigations with live imaging approaches, owing to its exceptionally high optical clarity in embryonic and larval stages. Recent advances in light microscopy technology enable comprehensive analyses of cellular dynamics during zebrafish embryonic development, systematic mapping of gene expression dynamics, quantitative reconstruction of mutant phenotypes and the system-level biophysical study of morphogenesis. Despite these technical breakthroughs, it remains challenging to design and implement experiments for in vivo long-term imaging at high spatio-temporal resolution. This article discusses the fundamental challenges in zebrafish long-term live imaging, provides experimental protocols and highlights key properties and capabilities of advanced fluorescence microscopes. The article focuses in particular on experimental assays based on light sheet-based fluorescence microscopy, an emerging imaging technology that achieves exceptionally high imaging speeds and excellent signal-to-noise ratios, while minimizing light-induced damage to the specimen. This unique combination of capabilities makes light sheet microscopy an indispensable tool for the in vivo long-term imaging of large developing organisms.
斑马鱼(Danio rerio)已成为一种强大的脊椎动物模型系统,由于其在胚胎和幼体阶段具有极高的光学透明度,特别适合通过活体成像方法进行定量研究。近年来,显微镜技术的进步使得对斑马鱼胚胎发育过程中的细胞动态、基因表达动态的系统映射、突变表型的定量重构以及形态发生的系统级生物物理研究等方面进行全面分析成为可能。尽管取得了这些技术突破,但在高时空分辨率下进行体内长期成像的实验设计和实施仍然具有挑战性。本文讨论了斑马鱼长期活体成像的基本挑战,提供了实验方案,并重点介绍了先进荧光显微镜的关键特性和功能。本文特别关注基于光片荧光显微镜的实验分析,这是一种新兴的成像技术,可实现极高的成像速度和优异的信噪比,同时最大限度地减少对标本的光损伤。这种独特的功能组合使光片显微镜成为对大型发育生物进行体内长期成像的不可或缺的工具。