Suppr超能文献

运用计算模型来关联结构和功能脑连接。

Using computational models to relate structural and functional brain connectivity.

机构信息

Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodarenskou vezi 271/2, 182 07 Prague 8, Czech Republic.

出版信息

Eur J Neurosci. 2012 Jul;36(2):2137-45. doi: 10.1111/j.1460-9568.2012.08081.x.

Abstract

Modern imaging methods allow a non-invasive assessment of both structural and functional brain connectivity. This has lead to the identification of disease-related alterations affecting functional connectivity. The mechanism of how such alterations in functional connectivity arise in a structured network of interacting neural populations is as yet poorly understood. Here we use a modeling approach to explore the way in which this can arise and to highlight the important role that local population dynamics can have in shaping emergent spatial functional connectivity patterns. The local dynamics for a neural population is taken to be of the Wilson-Cowan type, whilst the structural connectivity patterns used, describing long-range anatomical connections, cover both realistic scenarios (from the CoComac database) and idealized ones that allow for more detailed theoretical study. We have calculated graph-theoretic measures of functional network topology from numerical simulations of model networks. The effect of the form of local dynamics on the observed network state is quantified by examining the correlation between structural and functional connectivity. We document a profound and systematic dependence of the simulated functional connectivity patterns on the parameters controlling the dynamics. Importantly, we show that a weakly coupled oscillator theory explaining these correlations and their variation across parameter space can be developed. This theoretical development provides a novel way to characterize the mechanisms for the breakdown of functional connectivity in diseases through changes in local dynamics.

摘要

现代成像方法允许对大脑的结构和功能连接进行非侵入性评估。这导致了识别出影响功能连接的与疾病相关的改变。在相互作用的神经群体的结构化网络中,这种功能连接的改变是如何产生的,其机制尚未得到很好的理解。在这里,我们使用建模方法来探索这种情况是如何产生的,并强调局部群体动力学在塑造新兴的空间功能连接模式方面可以发挥的重要作用。将神经群体的局部动力学视为威尔逊-科旺(Wilson-Cowan)类型,而用于描述长程解剖连接的结构连接模式既包括现实场景(来自 CoComac 数据库),也包括允许更详细的理论研究的理想化场景。我们已经从模型网络的数值模拟中计算出功能网络拓扑的图论度量。通过检查结构连接和功能连接之间的相关性,来量化局部动力学形式对观察到的网络状态的影响。我们记录了模拟功能连接模式对控制动力学的参数的深刻而系统的依赖性。重要的是,我们表明可以开发一种解释这些相关性及其在参数空间中的变化的弱耦合振荡器理论。这种理论发展为通过局部动力学的变化来描述疾病中功能连接中断的机制提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd5e/3437497/77a778e0ba63/ejn0036-2137-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验