Suppr超能文献

基于双对比增强磁共振图像纹理参数的无创性肝纤维化分类。

Noninvasive classification of hepatic fibrosis based on texture parameters from double contrast-enhanced magnetic resonance images.

机构信息

University of California, San Diego, Department of Radiology, San Diego, California 92103, USA.

出版信息

J Magn Reson Imaging. 2012 Nov;36(5):1154-61. doi: 10.1002/jmri.23759. Epub 2012 Jul 31.

Abstract

PURPOSE

To demonstrate a proof of concept that quantitative texture feature analysis of double contrast-enhanced magnetic resonance imaging (MRI) can classify fibrosis noninvasively, using histology as a reference standard.

MATERIALS AND METHODS

A Health Insurance Portability and Accountability Act (HIPAA)-compliant Institutional Review Board (IRB)-approved retrospective study of 68 patients with diffuse liver disease was performed at a tertiary liver center. All patients underwent double contrast-enhanced MRI, with histopathology-based staging of fibrosis obtained within 12 months of imaging. The MaZda software program was used to compute 279 texture parameters for each image. A statistical regularization technique, generalized linear model (GLM)-path, was used to develop a model based on texture features for dichotomous classification of fibrosis category (F ≤2 vs. F ≥3) of the 68 patients, with histology as the reference standard. The model's performance was assessed and cross-validated. There was no additional validation performed on an independent cohort.

RESULTS

Cross-validated sensitivity, specificity, and total accuracy of the texture feature model in classifying fibrosis were 91.9%, 83.9%, and 88.2%, respectively.

CONCLUSION

This study shows proof of concept that accurate, noninvasive classification of liver fibrosis is possible by applying quantitative texture analysis to double contrast-enhanced MRI. Further studies are needed in independent cohorts of subjects.

摘要

目的

通过使用组织病理学作为参考标准,证明定量纹理特征分析双对比增强磁共振成像(MRI)可以对纤维化进行非侵入性分类的概念验证。

材料和方法

在一家三级肝脏中心进行了一项符合健康保险流通与责任法案(HIPAA)的机构审查委员会(IRB)批准的回顾性研究,纳入了 68 例弥漫性肝病患者。所有患者均接受了双对比增强 MRI 检查,并在成像后 12 个月内获得了基于组织病理学的纤维化分期。使用 MaZda 软件程序计算了每个图像的 279 个纹理参数。使用广义线性模型(GLM)路径的统计正则化技术,针对纤维化类别(F≤2 与 F≥3),为 68 例患者基于纹理特征建立了一种模型,以组织病理学作为参考标准。评估并交叉验证了该模型的性能。未对独立队列进行额外验证。

结果

纹理特征模型对纤维化进行分类的交叉验证敏感性、特异性和总准确性分别为 91.9%、83.9%和 88.2%。

结论

这项研究表明,通过对双对比增强 MRI 应用定量纹理分析,对肝纤维化进行准确、非侵入性的分类是可行的。需要在独立的受试者队列中进行进一步研究。

相似文献

引用本文的文献

10
Imaging of Hepatic Fibrosis.肝纤维化的影像学检查
Curr Gastroenterol Rep. 2018 Aug 29;20(10):45. doi: 10.1007/s11894-018-0652-7.

本文引用的文献

2
MaZda--a software package for image texture analysis.马自达——一款用于图像纹理分析的软件包。
Comput Methods Programs Biomed. 2009 Apr;94(1):66-76. doi: 10.1016/j.cmpb.2008.08.005. Epub 2008 Oct 14.
4
Assessment of hepatic fibrosis with magnetic resonance elastography.磁共振弹性成像评估肝纤维化
Clin Gastroenterol Hepatol. 2007 Oct;5(10):1207-1213.e2. doi: 10.1016/j.cgh.2007.06.012.
7
MR elastography of the liver: preliminary results.肝脏磁共振弹性成像:初步结果。
Radiology. 2006 Aug;240(2):440-8. doi: 10.1148/radiol.2402050606.
10
Evaluation of liver fibrosis: a concise review.肝纤维化的评估:简要综述
Am J Gastroenterol. 2004 Jun;99(6):1160-74. doi: 10.1111/j.1572-0241.2004.30110.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验