Suppr超能文献

B-Pred,一个基于结构的B细胞表位预测服务器。

B-Pred, a structure based B-cell epitopes prediction server.

作者信息

Giacò Luciano, Amicosante Massimo, Fraziano Maurizio, Gherardini Pier Federico, Ausiello Gabriele, Helmer-Citterich Manuela, Colizzi Vittorio, Cabibbo Andrea

机构信息

Department of Biology, University of Rome "Tor Vergata", Rome, Italy.

出版信息

Adv Appl Bioinform Chem. 2012;5:11-21. doi: 10.2147/AABC.S30620. Epub 2012 Jul 25.

Abstract

The ability to predict immunogenic regions in selected proteins by in-silico methods has broad implications, such as allowing a quick selection of potential reagents to be used as diagnostics, vaccines, immunotherapeutics, or research tools in several branches of biological and biotechnological research. However, the prediction of antibody target sites in proteins using computational methodologies has proven to be a highly challenging task, which is likely due to the somewhat elusive nature of B-cell epitopes. This paper proposes a web-based platform for scoring potential immunological reagents based on the structures or 3D models of the proteins of interest. The method scores a protein's peptides set, which is derived from a sliding window, based on the average solvent exposure, with a filter on the average local model quality for each peptide. The platform was validated on a custom-assembled database of 1336 experimentally determined epitopes from 106 proteins for which a reliable 3D model could be obtained through standard modeling techniques. Despite showing poor sensitivity, this method can achieve a specificity of 0.70 and a positive predictive value of 0.29 by combining these two simple parameters. These values are slightly higher than those obtained with other established sequence-based or structure-based methods that have been evaluated using the same epitopes dataset. This method is implemented in a web server called B-Pred, which is accessible at http://immuno.bio.uniroma2.it/bpred. The server contains a number of original features that allow users to perform personalized reagent searches by manipulating the sliding window's width and sliding step, changing the exposure and model quality thresholds, and running sequential queries with different parameters. The B-Pred server should assist experimentalists in the rational selection of epitope antigens for a wide range of applications.

摘要

通过计算机方法预测特定蛋白质中的免疫原性区域具有广泛的意义,例如能够快速筛选出潜在的试剂,用作生物和生物技术研究多个分支中的诊断试剂、疫苗、免疫疗法或研究工具。然而,使用计算方法预测蛋白质中的抗体靶位点已被证明是一项极具挑战性的任务,这可能是由于B细胞表位的性质有些难以捉摸。本文提出了一个基于网络的平台,用于根据感兴趣蛋白质的结构或三维模型对潜在的免疫试剂进行评分。该方法基于平均溶剂暴露对从滑动窗口衍生的蛋白质肽集进行评分,并对每个肽的平均局部模型质量进行筛选。该平台在一个定制组装的数据库上进行了验证,该数据库包含来自106种蛋白质的1336个实验确定的表位,通过标准建模技术可以获得可靠的三维模型。尽管灵敏度较低,但通过结合这两个简单参数,该方法可以实现0.70的特异性和0.29的阳性预测值。这些值略高于使用相同表位数据集评估的其他既定的基于序列或基于结构的方法所获得的值。该方法在一个名为B-Pred的网络服务器中实现,可通过http://immuno.bio.uniroma2.it/bpred访问。该服务器包含许多原始功能,允许用户通过操纵滑动窗口的宽度和滑动步长、更改暴露和模型质量阈值以及运行具有不同参数的顺序查询来执行个性化试剂搜索。B-Pred服务器应有助于实验人员合理选择用于广泛应用的表位抗原。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f83d/3413014/3746c7667800/aabc-5-011f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验