Suppr超能文献

用于即时诊断心血管疾病的可编程生物纳米芯片技术。

Programmable bio-nanochip technology for the diagnosis of cardiovascular disease at the point-of-care.

作者信息

Christodoulides Nicolaos, Pierre Floriano N, Sanchez Ximena, Li Luanyi, Hocquard Kyle, Patton Aaron, Muldoon Rachna, Miller Craig S, Ebersole Jeffrey L, Redding Spencer, Yeh Chih-Ko, Furmaga Wieslaw B, Wampler David A, Bozkurt Biykem, Ballantyne Christie M, McDevitt John T

机构信息

Rice University, Houston, Texas, USA.

出版信息

Methodist Debakey Cardiovasc J. 2012 Jan;8(1):6-12. doi: 10.14797/mdcj-8-1-6.

Abstract

Cardiovascular disease remains the leading cause of death in the world and continues to serve as the major contributor to healthcare costs. Likewise, there is an ever-increasing need and demand for novel and more efficient diagnostic tools for the early detection of cardiovascular disease, especially at the point-of-care (POC). This article reviews the programmable bio-nanochip (P-BNC) system, a new medical microdevice approach with the capacity to deliver both high performance and reduced cost. This fully integrated, total analysis system leverages microelectronic components, microfabrication techniques, and nanotechnology to noninvasively measure multiple cardiac biomarkers in complex fluids, such as saliva, while offering diagnostic accuracy equal to laboratory-confined reference methods. This article profiles the P-BNC approach, describes its performance in real-world testing of clinical samples, and summarizes new opportunities for medical microdevices in the field of cardiac diagnostics.

摘要

心血管疾病仍然是全球主要死因,并且持续成为医疗成本的主要构成因素。同样,对于新型且更高效的心血管疾病早期检测诊断工具(尤其是即时检测(POC)工具)的需求也在不断增加。本文综述了可编程生物纳米芯片(P-BNC)系统,这是一种新型医疗微设备方法,具备高性能和低成本特性。这种完全集成的全分析系统利用微电子元件、微制造技术和纳米技术,以非侵入方式测量复杂流体(如唾液)中的多种心脏生物标志物,同时提供与实验室参考方法相当的诊断准确性。本文介绍了P-BNC方法,描述了其在临床样本实际测试中的性能,并总结了心脏诊断领域医疗微设备的新机遇。

相似文献

1
Programmable bio-nanochip technology for the diagnosis of cardiovascular disease at the point-of-care.
Methodist Debakey Cardiovasc J. 2012 Jan;8(1):6-12. doi: 10.14797/mdcj-8-1-6.
2
Programmable Bio-nanochip Platform: A Point-of-Care Biosensor System with the Capacity To Learn.
Acc Chem Res. 2016 Jul 19;49(7):1359-68. doi: 10.1021/acs.accounts.6b00112. Epub 2016 Jul 6.
3
Challenges and opportunities for translating medical microdevices: insights from the programmable bio-nano-chip.
Bioanalysis. 2016 May;8(9):905-19. doi: 10.4155/bio-2015-0023. Epub 2016 Apr 13.
4
Lab-on-a-Disc for Point-of-Care Infection Diagnostics.
Acc Chem Res. 2021 Oct 5;54(19):3643-3655. doi: 10.1021/acs.accounts.1c00367. Epub 2021 Sep 13.
5
Programmable bio-nano-chip systems for serum CA125 quantification: toward ovarian cancer diagnostics at the point-of-care.
Cancer Prev Res (Phila). 2012 May;5(5):706-16. doi: 10.1158/1940-6207.CAPR-11-0508. Epub 2012 Apr 9.
6
Programmable bio-nano-chip system: a flexible point-of-care platform for bioscience and clinical measurements.
Lab Chip. 2015 Oct 21;15(20):4020-31. doi: 10.1039/c5lc00636h. Epub 2015 Aug 26.
7
Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care.
Biotechnol Adv. 2016 May-Jun;34(3):305-20. doi: 10.1016/j.biotechadv.2016.02.008. Epub 2016 Feb 18.
8
Total Microfluidic chip for Multiplexed diagnostics (ToMMx).
Biosens Bioelectron. 2020 Feb 15;150:111930. doi: 10.1016/j.bios.2019.111930. Epub 2019 Nov 28.
10
Point-of-care oral-based diagnostics.
Oral Dis. 2011 Nov;17(8):745-52. doi: 10.1111/j.1601-0825.2011.01808.x. Epub 2011 Apr 26.

引用本文的文献

1
Rapid Detection of SARS-CoV-2 Variants of Concern by Genomic Surveillance Techniques.
Adv Exp Med Biol. 2023;1412:491-509. doi: 10.1007/978-3-031-28012-2_27.
2
Development of a Point-of-Care SPR Sensor for the Diagnosis of Acute Myocardial Infarction.
Biosensors (Basel). 2023 Feb 5;13(2):229. doi: 10.3390/bios13020229.
3
Risk vs. disease: the role of artificial intelligence in avoiding unneeded testing.
Eur Heart J Digit Health. 2022 Feb 12;3(1):8-10. doi: 10.1093/ehjdh/ztac003. eCollection 2022 Mar.
4
Smart Diagnostics: Combining Artificial Intelligence and In Vitro Diagnostics.
Sensors (Basel). 2022 Aug 24;22(17):6355. doi: 10.3390/s22176355.
6
Health Economic Evidence of Point-of-Care Testing: A Systematic Review.
Pharmacoecon Open. 2021 Jun;5(2):157-173. doi: 10.1007/s41669-020-00248-1. Epub 2021 Jan 6.
7
Cardiac ScoreCard: A Diagnostic Multivariate Index Assay System for Predicting a Spectrum of Cardiovascular Disease.
Expert Syst Appl. 2016 Jul 15;54:136-147. doi: 10.1016/j.eswa.2016.01.029. Epub 2016 Jan 25.
8
Sensors that Learn: The Evolution from Taste Fingerprints to Patterns of Early Disease Detection.
Micromachines (Basel). 2019 Apr 16;10(4):251. doi: 10.3390/mi10040251.
9
Programmable bio-nano-chip system: a flexible diagnostic platform that learns.
J Biosens Bioelectron. 2015;6(2). doi: 10.4172/2155-6210.1000e137. Epub 2015 May 10.

本文引用的文献

3
Programmable nano-bio-chip sensors: analytical meets clinical.
Anal Chem. 2010 Mar 1;82(5):1571-9. doi: 10.1021/ac901743u.
4
Current status of nanotechnology approaches for cardiovascular disease: a personal perspective.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009 Mar-Apr;1(2):149-55. doi: 10.1002/wnan.8.
5
Heart disease and stroke statistics--2010 update: a report from the American Heart Association.
Circulation. 2010 Feb 23;121(7):e46-e215. doi: 10.1161/CIRCULATIONAHA.109.192667. Epub 2009 Dec 17.
7
Use of saliva-based nano-biochip tests for acute myocardial infarction at the point of care: a feasibility study.
Clin Chem. 2009 Aug;55(8):1530-8. doi: 10.1373/clinchem.2008.117713. Epub 2009 Jun 25.
8
Assay imprecision and 99th-percentile reference value of a high-sensitivity cardiac troponin I assay.
Clin Chem. 2009 Jul;55(7):1433-4. doi: 10.1373/clinchem.2009.124925. Epub 2009 May 14.
10
A microchip-based assay for interleukin-6.
Methods Mol Biol. 2007;385:131-44. doi: 10.1007/978-1-59745-426-1_10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验