Suppr超能文献

高光谱成象和前列腺癌探测的定量分析。

Hyperspectral imaging and quantitative analysis for prostate cancer detection.

机构信息

Emory University, Department of Radiology and Imaging Sciences, Atlanta, Georgia 30329, USA.

出版信息

J Biomed Opt. 2012 Jul;17(7):076005. doi: 10.1117/1.JBO.17.7.076005.

Abstract

Hyperspectral imaging (HSI) is an emerging modality for various medical applications. Its spectroscopic data might be able to be used to noninvasively detect cancer. Quantitative analysis is often necessary in order to differentiate healthy from diseased tissue. We propose the use of an advanced image processing and classification method in order to analyze hyperspectral image data for prostate cancer detection. The spectral signatures were extracted and evaluated in both cancerous and normal tissue. Least squares support vector machines were developed and evaluated for classifying hyperspectral data in order to enhance the detection of cancer tissue. This method was used to detect prostate cancer in tumor-bearing mice and on pathology slides. Spatially resolved images were created to highlight the differences of the reflectance properties of cancer versus those of normal tissue. Preliminary results with 11 mice showed that the sensitivity and specificity of the hyperspectral image classification method are 92.8% to 2.0% and 96.9% to 1.3%, respectively. Therefore, this imaging method may be able to help physicians to dissect malignant regions with a safe margin and to evaluate the tumor bed after resection. This pilot study may lead to advances in the optical diagnosis of prostate cancer using HSI technology.

摘要

高光谱成像是一种新兴的医学应用模态。其光谱数据或许能够用于非侵入式地检测癌症。为了区分健康组织和病变组织,通常需要进行定量分析。我们提出使用先进的图像处理和分类方法来分析前列腺癌检测的高光谱图像数据。提取并评估了癌组织和正常组织的光谱特征。开发并评估了最小二乘支持向量机来对高光谱数据进行分类,以增强对癌症组织的检测。该方法用于检测荷瘤小鼠和病理切片上的前列腺癌。创建了空间分辨图像以突出癌症与正常组织的反射特性的差异。11 只小鼠的初步结果表明,高光谱图像分类方法的灵敏度和特异性分别为 92.8%和 2.0%,96.9%和 1.3%。因此,这种成像方法可能有助于医生以安全的边缘解剖恶性区域,并评估切除后的肿瘤床。这项初步研究可能会推动使用高光谱成像技术进行前列腺癌的光学诊断。

相似文献

5
Sparse demixing of hyperspectral images.高光谱图像稀疏分解。
IEEE Trans Image Process. 2012 Jan;21(1):219-28. doi: 10.1109/TIP.2011.2160189. Epub 2011 Jun 20.
10
A pattern recognition approach to zonal segmentation of the prostate on MRI.一种基于模式识别的前列腺MRI区域分割方法。
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):413-20. doi: 10.1007/978-3-642-33418-4_51.

引用本文的文献

2
LED-based, real-time, hyperspectral imaging device.基于发光二极管的实时高光谱成像设备。
J Med Imaging (Bellingham). 2025 May;12(3):035002. doi: 10.1117/1.JMI.12.3.035002. Epub 2025 Jun 12.

本文引用的文献

3
Cancer detection using infrared hyperspectral imaging.利用红外高光谱成像技术进行癌症检测。
Cancer Sci. 2011 Apr;102(4):852-7. doi: 10.1111/j.1349-7006.2011.01849.x. Epub 2011 Feb 11.
5
Cancer statistics, 2010.癌症统计数据,2010 年。
CA Cancer J Clin. 2010 Sep-Oct;60(5):277-300. doi: 10.3322/caac.20073. Epub 2010 Jul 7.
8
Optical reflectance spectroscopy for detection of human prostate cancer.用于检测人类前列腺癌的光学反射光谱法。
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:118-21. doi: 10.1109/IEMBS.2009.5334830.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验