Suppr超能文献

生物寡糖混合物的鉴定和准确定量。

Identification and accurate quantitation of biological oligosaccharide mixtures.

机构信息

Department of Chemistry, University of California, Davis, 95616, United States.

出版信息

Anal Chem. 2012 Sep 18;84(18):7793-801. doi: 10.1021/ac301128s. Epub 2012 Aug 29.

Abstract

Structure-specific characterization and quantitation is often required for effective functional studies of oligosaccharides. Inside the gut, HMOs are preferentially bound and catabolized by the beneficial bacteria. HMO utility by these bacteria employs structure-specific catabolism based on a number of glycosidases. Determining the activity of these enzymes requires accurate quantitation of a large number of structures. In this study, we describe a method for the quantitation of human milk oligosaccharide (HMO) structures employing LC/MS and isotopically labeled internal standards. Data analysis was accomplished with a newly developed software tool, LC/MS Searcher, that employs a reference structure library to process LC/MS data yielding structural identification with accurate quantitation. The method was used to obtain a meta-enzyme analysis of bacteria, the simultaneous characterization of all glycosidases employed by bacteria for the catabolism of milk oligosaccharides. Analysis of consumed HMO structures confirmed the utility of a β-1,3-galactosidase in Bifidobacterium longum subsp. infantis ATCC 15697 (B. infantis). In comparison, Bifidobacterium breve ATCC 15700 showed significantly less HMO catabolic activity compared to B. infantis.

摘要

通常需要对寡糖进行结构特异性的表征和定量,以进行有效的功能研究。在肠道内,HMO 优先被有益细菌结合和代谢。这些细菌利用 HMO 的功能依赖于许多糖苷酶的结构特异性代谢。要确定这些酶的活性,需要对大量结构进行准确的定量。在这项研究中,我们描述了一种使用 LC/MS 和同位素标记内标定量人乳寡糖 (HMO) 结构的方法。数据分析采用了一种新开发的软件工具 LC/MS Searcher,该工具使用参考结构库处理 LC/MS 数据,可进行结构鉴定并进行准确的定量。该方法用于对细菌进行元酶分析,同时对细菌用于代谢乳寡糖的所有糖苷酶进行特征分析。对消耗的 HMO 结构的分析证实了β-1,3-半乳糖苷酶在长双歧杆菌亚种中的作用。婴儿 ATCC 15697(婴儿双歧杆菌)。相比之下,与婴儿双歧杆菌相比,短双歧杆菌 ATCC 15700 显示出的 HMO 代谢活性明显较低。

相似文献

1
Identification and accurate quantitation of biological oligosaccharide mixtures.
Anal Chem. 2012 Sep 18;84(18):7793-801. doi: 10.1021/ac301128s. Epub 2012 Aug 29.
2
Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve.
Appl Environ Microbiol. 2013 Oct;79(19):6040-9. doi: 10.1128/AEM.01843-13. Epub 2013 Jul 26.
3
Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria.
J Biol Chem. 2011 Oct 7;286(40):34583-92. doi: 10.1074/jbc.M111.248138. Epub 2011 Aug 9.
4
Identification of Oligosaccharides in Feces of Breast-fed Infants and Their Correlation with the Gut Microbial Community.
Mol Cell Proteomics. 2016 Sep;15(9):2987-3002. doi: 10.1074/mcp.M116.060665. Epub 2016 Jul 19.
5
A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides.
Microb Biotechnol. 2009 May;2(3):333-42. doi: 10.1111/j.1751-7915.2008.00072.x. Epub 2008 Dec 5.
6
Genome-scale metabolic modeling of the human milk oligosaccharide utilization by subsp. .
mSystems. 2024 Mar 19;9(3):e0071523. doi: 10.1128/msystems.00715-23. Epub 2024 Feb 16.
7
Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut.
Pediatr Res. 2015 Jan;77(1-2):229-35. doi: 10.1038/pr.2014.156. Epub 2014 Oct 10.
9
Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization.
Appl Environ Microbiol. 2010 Nov;76(22):7373-81. doi: 10.1128/AEM.00675-10. Epub 2010 Aug 27.

引用本文的文献

4
Challenges and Pitfalls in Human Milk Oligosaccharide Analysis.
Nutrients. 2019 Nov 6;11(11):2684. doi: 10.3390/nu11112684.
6
Breast milk oligosaccharides: structure-function relationships in the neonate.
Annu Rev Nutr. 2014;34:143-69. doi: 10.1146/annurev-nutr-071813-105721. Epub 2014 May 15.
7
Isomer-specific consumption of galactooligosaccharides by bifidobacterial species.
J Agric Food Chem. 2013 Dec 26;61(51):12612-12619. doi: 10.1021/jf403789r. Epub 2013 Dec 13.
8
Oligosaccharide analysis by mass spectrometry: a review of recent developments.
Anal Chem. 2014 Jan 7;86(1):196-212. doi: 10.1021/ac403969n. Epub 2013 Dec 16.
9
Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve.
Appl Environ Microbiol. 2013 Oct;79(19):6040-9. doi: 10.1128/AEM.01843-13. Epub 2013 Jul 26.

本文引用的文献

1
Application of nano-LC-based glycomics towards biomarker discovery.
Bioanalysis. 2011 Nov;3(22):2573-85. doi: 10.4155/bio.11.263.
2
Automated methods for the location of the boundaries of chromatographic peaks.
J Chromatogr A. 2011 Nov 11;1218(45):8255-63. doi: 10.1016/j.chroma.2011.08.088. Epub 2011 Sep 22.
4
Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria.
J Biol Chem. 2011 Oct 7;286(40):34583-92. doi: 10.1074/jbc.M111.248138. Epub 2011 Aug 9.
5
Quantification of bovine milk oligosaccharides using liquid chromatography-selected reaction monitoring-mass spectrometry.
J Agric Food Chem. 2011 Sep 28;59(18):9788-95. doi: 10.1021/jf202035m. Epub 2011 Aug 26.
6
A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides.
Microb Biotechnol. 2009 May;2(3):333-42. doi: 10.1111/j.1751-7915.2008.00072.x. Epub 2008 Dec 5.
7
Development: Mother's milk: A rich opportunity.
Nature. 2010 Dec 23;468(7327):S5-7. doi: 10.1038/468S5a.
8
Annotation and structural analysis of sialylated human milk oligosaccharides.
J Proteome Res. 2011 Feb 4;10(2):856-68. doi: 10.1021/pr101006u. Epub 2011 Jan 6.
9
Human milk glycobiome and its impact on the infant gastrointestinal microbiota.
Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1(Suppl 1):4653-8. doi: 10.1073/pnas.1000083107. Epub 2010 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验