Suppr超能文献

比较基因组杂交揭示长双歧杆菌亚种婴儿双歧杆菌中利用牛奶的基因广泛保守。

Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization.

机构信息

Department of Viticulture and Enology, University of California, Davis, CA 95616, USA.

出版信息

Appl Environ Microbiol. 2010 Nov;76(22):7373-81. doi: 10.1128/AEM.00675-10. Epub 2010 Aug 27.

Abstract

Human milk oligosaccharides (HMOs) are the third-largest solid component of milk. Their structural complexity renders them nondigestible to the host but liable to hydrolytic enzymes of the infant colonic microbiota. Bifidobacteria and, frequently, Bifidobacterium longum strains predominate the colonic microbiota of exclusively breast-fed infants. Among the three recognized subspecies of B. longum, B. longum subsp. infantis achieves high levels of cell growth on HMOs and is associated with early colonization of the infant gut. The B. longum subsp. infantis ATCC 15697 genome features five distinct gene clusters with the predicted capacity to bind, cleave, and import milk oligosaccharides. Comparative genomic hybridizations (CGHs) were used to associate genotypic biomarkers among 15 B. longum strains exhibiting various HMO utilization phenotypes and host associations. Multilocus sequence typing provided taxonomic subspecies designations and grouped the strains between B. longum subsp. infantis and B. longum subsp. longum. CGH analysis determined that HMO utilization gene regions are exclusively conserved across all B. longum subsp. infantis strains capable of growth on HMOs and have diverged in B. longum subsp. longum strains that cannot grow on HMOs. These regions contain fucosidases, sialidases, glycosyl hydrolases, ABC transporters, and family 1 solute binding proteins and are likely needed for efficient metabolism of HMOs. Urea metabolism genes and their activity were exclusively conserved in B. longum subsp. infantis. These results imply that the B. longum has at least two distinct subspecies: B. longum subsp. infantis, specialized to utilize milk carbon, and B. longum subsp. longum, specialized for plant-derived carbon metabolism.

摘要

人乳寡糖(HMOs)是牛奶中第三大固体成分。它们的结构复杂性使它们不能被宿主消化,但易被婴儿结肠微生物群的水解酶水解。双歧杆菌,通常还有长双歧杆菌,是纯母乳喂养婴儿结肠微生物群的优势菌。在长双歧杆菌的三个公认亚种中,长双歧杆菌亚种。婴儿能在 HMO 上实现高水平的细胞生长,并且与婴儿肠道的早期定植有关。长双歧杆菌亚种。婴儿 ATCC 15697 基因组具有五个不同的基因簇,具有结合、切割和导入乳寡糖的预测能力。比较基因组杂交(CGH)用于在 15 株具有不同 HMO 利用表型和宿主关联的长双歧杆菌菌株中关联基因型生物标志物。多位点序列分型提供了分类亚种指定,并将菌株分为长双歧杆菌亚种。婴儿和长双歧杆菌亚种。长双歧杆菌。CGH 分析确定,HMO 利用基因区域在所有能够在 HMO 上生长的长双歧杆菌亚种。婴儿菌株中是完全保守的,并且在不能在 HMO 上生长的长双歧杆菌亚种。长双歧杆菌菌株中已经分化。这些区域包含岩藻糖酶、唾液酸酶、糖苷水解酶、ABC 转运蛋白和家族 1 溶质结合蛋白,可能是有效代谢 HMO 所必需的。尿素代谢基因及其活性仅在长双歧杆菌亚种中保守。婴儿。这些结果表明,长双歧杆菌至少有两个不同的亚种:长双歧杆菌亚种。婴儿,专门用于利用牛奶碳,以及长双歧杆菌亚种。长双歧杆菌,专门用于植物衍生的碳代谢。

相似文献

1
Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization.
Appl Environ Microbiol. 2010 Nov;76(22):7373-81. doi: 10.1128/AEM.00675-10. Epub 2010 Aug 27.
3
Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR.
mSystems. 2022 Oct 26;7(5):e0034322. doi: 10.1128/msystems.00343-22. Epub 2022 Sep 12.
5
Gene Sequence Variation in Bifidobacterium longum subsp. Detected in the Fecal Microbiota of Chinese Infants.
Appl Environ Microbiol. 2018 Jun 18;84(13). doi: 10.1128/AEM.00336-18. Print 2018 Jul 1.
7
Genome-scale metabolic modeling of the human milk oligosaccharide utilization by subsp. .
mSystems. 2024 Mar 19;9(3):e0071523. doi: 10.1128/msystems.00715-23. Epub 2024 Feb 16.
9
Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria.
J Biol Chem. 2011 Oct 7;286(40):34583-92. doi: 10.1074/jbc.M111.248138. Epub 2011 Aug 9.
10
Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides.
Trends Microbiol. 2010 Jul;18(7):298-307. doi: 10.1016/j.tim.2010.03.008. Epub 2010 Apr 19.

引用本文的文献

3
Bifidobacterium deficit in United States infants drives prevalent gut dysbiosis.
Commun Biol. 2025 Jun 24;8(1):867. doi: 10.1038/s42003-025-08274-7.
7
Bifidobacterium longum and microbiome maturation modify a nutrient intervention for stunting in Zimbabwean infants.
EBioMedicine. 2024 Oct;108:105362. doi: 10.1016/j.ebiom.2024.105362. Epub 2024 Sep 27.
8
Determining the metabolic fate of human milk oligosaccharides: it may just be more complex than you think?
Gut Microbiome (Camb). 2022 Sep 7;3:e9. doi: 10.1017/gmb.2022.8. eCollection 2022.

本文引用的文献

1
CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.
Evolution. 1985 Jul;39(4):783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x.
2
A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides.
Microb Biotechnol. 2009 May;2(3):333-42. doi: 10.1111/j.1751-7915.2008.00072.x. Epub 2008 Dec 5.
3
Species delineation and clonal diversity in four Bifidobacterium species as revealed by multilocus sequencing.
Res Microbiol. 2010 Mar;161(2):82-90. doi: 10.1016/j.resmic.2009.12.006. Epub 2010 Jan 11.
4
Improved analysis of bacterial CGH data beyond the log-ratio paradigm.
BMC Bioinformatics. 2009 Mar 19;10:91. doi: 10.1186/1471-2105-10-91.
5
A core gut microbiome in obese and lean twins.
Nature. 2009 Jan 22;457(7228):480-4. doi: 10.1038/nature07540. Epub 2008 Nov 30.
6
The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18964-9. doi: 10.1073/pnas.0809584105. Epub 2008 Nov 24.
7
Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide.
Appl Environ Microbiol. 2008 Aug;74(15):4686-94. doi: 10.1128/AEM.00122-08. Epub 2008 Jun 6.
9
Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure.
Appl Environ Microbiol. 2008 Jul;74(13):3996-4004. doi: 10.1128/AEM.00149-08. Epub 2008 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验