Suppr超能文献

基于马尔可夫毯的多维贝叶斯网络分类器学习方法:在预测欧洲生活质量-5 维度(EQ-5D)来自 39 项帕金森病问卷(PDQ-39)中的应用。

Markov blanket-based approach for learning multi-dimensional Bayesian network classifiers: an application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39).

机构信息

Computational Intelligence Group, Departamento de Inteligencia Artificial, Facultad de Informática, Universidad Politécnica de Madrid, Boadilla del Monte, Madrid 28660, Spain.

出版信息

J Biomed Inform. 2012 Dec;45(6):1175-84. doi: 10.1016/j.jbi.2012.07.010. Epub 2012 Aug 8.

Abstract

Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson's patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson's disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables.

摘要

多维贝叶斯网络分类器(MBCs)是最近提出的概率图形模型,用于处理多维分类问题,其中数据集的每个实例都必须分配给多个类变量。在本文中,我们提出了一种基于马尔可夫毯的方法,用于从数据中学习 MBC。基本上,它包括使用 HITON 算法确定每个类变量周围的马尔可夫毯,然后指定 MBC 子图的方向。我们的方法应用于从 39 项帕金森病问卷(PDQ-39)预测欧洲生活质量-5 维度(EQ-5D)的问题,以估计帕金森病患者的健康相关生活质量。在随机生成的合成数据集、酵母数据集以及包含 488 名患者的真实帕金森病数据集上进行了五折交叉验证实验。实验研究包括与其他基于贝叶斯网络的方法、用于多标签学习的反向传播、多标签 k-最近邻、多项逻辑回归、普通最小二乘法和有界最小绝对偏差的比较,在预测准确性和类变量和特征变量之间的依赖关系识别方面取得了令人鼓舞的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验