Suppr超能文献

在基因组规模代谢网络重建中整合表达数据。

Integration of expression data in genome-scale metabolic network reconstructions.

作者信息

Blazier Anna S, Papin Jason A

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville VA, USA.

出版信息

Front Physiol. 2012 Aug 6;3:299. doi: 10.3389/fphys.2012.00299. eCollection 2012.

Abstract

With the advent of high-throughput technologies, the field of systems biology has amassed an abundance of "omics" data, quantifying thousands of cellular components across a variety of scales, ranging from mRNA transcript levels to metabolite quantities. Methods are needed to not only integrate this omics data but to also use this data to heighten the predictive capabilities of computational models. Several recent studies have successfully demonstrated how flux balance analysis (FBA), a constraint-based modeling approach, can be used to integrate transcriptomic data into genome-scale metabolic network reconstructions to generate predictive computational models. In this review, we summarize such FBA-based methods for integrating expression data into genome-scale metabolic network reconstructions, highlighting their advantages as well as their limitations.

摘要

随着高通量技术的出现,系统生物学领域积累了大量的“组学”数据,这些数据在从mRNA转录水平到代谢物数量等各种尺度上对数千种细胞成分进行了量化。不仅需要整合这些组学数据的方法,还需要利用这些数据来提高计算模型的预测能力。最近的几项研究成功地证明了通量平衡分析(FBA),一种基于约束的建模方法,如何能够用于将转录组数据整合到基因组规模的代谢网络重建中,以生成预测性计算模型。在这篇综述中,我们总结了基于FBA的将表达数据整合到基因组规模代谢网络重建中的方法,突出了它们的优点和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d968/3429070/43bd167a9860/fphys-03-00299-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验