Suppr超能文献

全身及肺动脉的血管稀疏与血压

Rarefaction and blood pressure in systemic and pulmonary arteries.

作者信息

Olufsen Mette S, Hill N A, Vaughan Gareth D A, Sainsbury Christopher, Johnson Martin

机构信息

Department of Mathematics, North Carolina State University, Raleigh, NC 27502, USA.

出版信息

J Fluid Mech. 2012 Aug 1;705:280-305. doi: 10.1017/jfm.2012.220. Epub 2012 Jul 2.

Abstract

The effects of vascular rarefaction (the loss of small arteries) on the circulation of blood are studied using a multiscale mathematical model that can predict blood flow and pressure in the systemic and pulmonary arteries. We augmented a model originally developed for the systemic arteries (Olufsen et al. 1998, 1999, 2000, 2004) to (a) predict flow and pressure in the pulmonary arteries, and (b) predict pressure propagation along the small arteries in the vascular beds. The systemic and pulmonary arteries are modelled as separate, bifurcating trees of compliant and tapering vessels. Each tree is divided into two parts representing the large' and small' arteries. Blood flow and pressure in the large arteries are predicted using a nonlinear cross-sectional area-averaged model for a Newtonian fluid in an elastic tube with inflow obtained from magnetic resonance measurements. Each terminal vessel within the network of the large arteries is coupled to a vascular bed of small `resistance' arteries, which are modelled as asymmetric structured trees with specified area and asymmetry ratios between the parent and daughter arteries. For the systemic circulation, each structured tree represents a specific vascular bed corresponding to major organs and limbs. For the pulmonary circulation, there are four vascular beds supplied by the interlobar arteries. This manuscript presents the first theoretical calculations of the propagation of the pressure and flow waves along systemic and pulmonary large and small arteries. Results for all networks were in agreement with published observations. Two studies were done with this model. First, we showed how rarefaction can be modelled by pruning the tree of arteries in the microvascular system. This was done by modulating parameters used for designing the structured trees. Results showed that rarefaction leads to increased mean and decreased pulse pressure in the large arteries. Second, we investigated the impact of decreasing vessel compliance in both large and small arteries. Results showed, that the effects of decreased compliance in the large arteries far outweigh the effects observed when decreasing the compliance of the small arteries. We further showed that a decrease of compliance in the large arteries results in pressure increases consistent with observations of isolated systolic hypertension, as occurs in ageing.

摘要

利用一个多尺度数学模型研究了血管稀疏(小动脉丧失)对血液循环的影响,该模型能够预测体循环和肺动脉中的血流和压力。我们对最初为体动脉开发的模型(Olufsen等人,1998年、1999年、2000年、2004年)进行了扩充,以(a)预测肺动脉中的血流和压力,以及(b)预测压力沿血管床中小动脉的传播。体动脉和肺动脉被建模为相互独立的、由顺应性且逐渐变细的血管组成的分支树。每棵树分为两部分,分别代表“大”动脉和“小”动脉。使用非线性横截面积平均模型预测弹性管中牛顿流体的大动脉中的血流和压力,其流入量通过磁共振测量获得。大动脉网络中的每个末梢血管都与一个由小“阻力”动脉组成的血管床相连,这些小动脉被建模为具有特定面积以及母动脉和子动脉之间不对称比率的不对称结构树。对于体循环,每个结构树代表对应于主要器官和肢体的特定血管床。对于肺循环,有四个由叶间动脉供血的血管床。本手稿展示了压力和流动波沿体循环和肺循环的大、小动脉传播的首次理论计算。所有网络的结果与已发表的观察结果一致。使用该模型进行了两项研究。首先,我们展示了如何通过修剪微血管系统中的动脉树来模拟血管稀疏。这是通过调节用于设计结构树的参数来实现的。结果表明,血管稀疏会导致大动脉中的平均压升高和脉压降低。其次,我们研究了大小动脉中血管顺应性降低的影响。结果表明,大动脉中顺应性降低的影响远远超过小动脉顺应性降低时观察到的影响。我们还进一步表明,大动脉中顺应性的降低会导致压力升高,这与衰老时出现的孤立性收缩期高血压的观察结果一致。

相似文献

1
Rarefaction and blood pressure in systemic and pulmonary arteries.
J Fluid Mech. 2012 Aug 1;705:280-305. doi: 10.1017/jfm.2012.220. Epub 2012 Jul 2.
2
Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation.
Biomech Model Mechanobiol. 2014 Oct;13(5):1137-54. doi: 10.1007/s10237-014-0563-y. Epub 2014 Mar 9.
3
A one-dimensional fluid dynamic model of the systemic arteries.
Stud Health Technol Inform. 2000;71:79-97.
4
Microvascular rarefaction and tissue vascular resistance in hypertension.
Am J Physiol. 1989 Jan;256(1 Pt 2):H126-31. doi: 10.1152/ajpheart.1989.256.1.H126.
6
Wave propagation in a model of the arterial circulation.
J Biomech. 2004 Apr;37(4):457-70. doi: 10.1016/j.jbiomech.2003.09.007.
8
An effective fractal-tree closure model for simulating blood flow in large arterial networks.
Ann Biomed Eng. 2015 Jun;43(6):1432-42. doi: 10.1007/s10439-014-1221-3. Epub 2014 Dec 16.

引用本文的文献

2
Efficient uncertainty quantification in a spatially multiscale model of pulmonary arterial and venous hemodynamics.
Biomech Model Mechanobiol. 2024 Dec;23(6):1909-1931. doi: 10.1007/s10237-024-01875-x. Epub 2024 Jul 29.
3
Estimating pulmonary arterial remodeling via an animal-specific computational model of pulmonary artery stenosis.
Biomech Model Mechanobiol. 2024 Oct;23(5):1469-1490. doi: 10.1007/s10237-024-01850-6. Epub 2024 Jun 25.
4
Arterial pulse wave modeling and analysis for vascular-age studies: a review from VascAgeNet.
Am J Physiol Heart Circ Physiol. 2023 Jul 1;325(1):H1-H29. doi: 10.1152/ajpheart.00705.2022. Epub 2023 Mar 31.
5
Beyond CFD: Emerging methodologies for predictive simulation in cardiovascular health and disease.
Biophys Rev (Melville). 2023 Mar;4(1):011301. doi: 10.1063/5.0109400. Epub 2023 Jan 13.
6
Virtual Transcatheter Interventions for Peripheral Pulmonary Artery Stenosis in Williams and Alagille Syndromes.
J Am Heart Assoc. 2022 Mar 15;11(6):e023532. doi: 10.1161/JAHA.121.023532. Epub 2022 Mar 5.
7
A multiscale model of vascular function in chronic thromboembolic pulmonary hypertension.
Am J Physiol Heart Circ Physiol. 2021 Aug 1;321(2):H318-H338. doi: 10.1152/ajpheart.00086.2021. Epub 2021 Jun 18.
8
Longitudinal Evolution of Pulmonary Artery Wall Shear Stress in a Swine Model of Pulmonary Artery Stenosis and Stent Interventions.
Ann Biomed Eng. 2021 Jun;49(6):1477-1492. doi: 10.1007/s10439-020-02696-6. Epub 2021 Jan 4.
9
Mechanisms Contributing to the Generation of Mayer Waves.
Front Neurosci. 2020 Jul 10;14:395. doi: 10.3389/fnins.2020.00395. eCollection 2020.
10
Image-based scaling laws for somatic growth and pulmonary artery morphometry from infancy to adulthood.
Am J Physiol Heart Circ Physiol. 2020 Aug 1;319(2):H432-H442. doi: 10.1152/ajpheart.00123.2020. Epub 2020 Jul 3.

本文引用的文献

1
Microcirculation and Hemorheology.
Annu Rev Fluid Mech. 2005 Jan 1;37:43-69. doi: 10.1146/annurev.fluid.37.042604.133933.
2
Wave propagation through a viscous incompressible fluid contained in an initially stressed elastic tube.
Biophys J. 1966 Jul;6(4):481-503. doi: 10.1016/S0006-3495(66)86671-7. Epub 2008 Dec 31.
3
Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions.
Comput Methods Biomech Biomed Engin. 2007 Feb;10(1):39-51. doi: 10.1080/10255840601068638.
4
Hypoxia and chronic lung disease.
J Mol Med (Berl). 2007 Dec;85(12):1317-24. doi: 10.1007/s00109-007-0280-4. Epub 2007 Nov 27.
7
Hypertension: a disease of the microcirculation?
Hypertension. 2006 Dec;48(6):1012-7. doi: 10.1161/01.HYP.0000249510.20326.72. Epub 2006 Oct 23.
8
Microvascular rarefaction in hypertension--reversal or over-correction by treatment?
Am J Hypertens. 2006 May;19(5):484-5. doi: 10.1016/j.amjhyper.2005.11.010.
9
Systolic hypertension: an overview.
Am Heart J. 2005 May;149(5):769-75. doi: 10.1016/j.ahj.2005.01.037.
10
Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms.
Am J Hypertens. 2005 Jan;18(1 Pt 2):3S-10S. doi: 10.1016/j.amjhyper.2004.10.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验