Suppr超能文献

纳米级氧化石墨烯(nGO)作为人工受体:对生物分子相互作用和传感的影响。

Nanoscale graphene oxide (nGO) as artificial receptors: implications for biomolecular interactions and sensing.

机构信息

Department of Materials Science & Engineering, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

J Am Chem Soc. 2012 Oct 10;134(40):16725-33. doi: 10.1021/ja306767y. Epub 2012 Sep 26.

Abstract

The role of conventional graphene-oxide in biosensing has been limited to that of a quenching substrate or signal transducer due to size inconsistencies and poor supramolecular response. We overcame these issues by using nanoscale GOs (nGO) as artificial receptors. Unlike conventional GO, nGOs are sheets with near uniform lateral dimension of 20 nm. Due to its nanoscale architecture, its supramolecular response was enhanced, with demonstrated improvements in biomacromolecular affinities. This rendered their surface capable of detecting unknown proteins with cognizance not seen with conventional GOs. Different proteins at 100 and 10 nM concentrations revealed consistent patterns that are quantitatively differentiable by linear discriminant analysis. Identification of 48 unknowns in both concentrations demonstrated a >95% success rate. The 10 nM detection represents a 10-fold improvement over analogous arrays. This demonstrates for the first time that the supramolecular chemistry of GO is highly size dependent and opens the possibility of improvement upon existing GO hybrid materials.

摘要

传统氧化石墨烯在生物传感中的作用仅限于作为猝灭底物或信号转导物,因为其尺寸不一致且超分子响应较差。我们通过使用纳米氧化石墨烯(nGO)作为人工受体克服了这些问题。与传统 GO 不同,nGO 是具有近 20nm 均匀横向尺寸的薄片。由于其纳米级结构,其超分子响应得到增强,对生物大分子的亲和力也得到了证明。这使得它们的表面能够检测到未知蛋白质,而传统 GO 则无法检测到。在 100 和 10 nM 浓度下的不同蛋白质显示出一致的模式,可通过线性判别分析进行定量区分。在两种浓度下对 48 种未知物的鉴定显示成功率超过 95%。10 nM 的检测比类似的阵列提高了 10 倍。这首次证明了 GO 的超分子化学高度依赖于尺寸,并为改进现有的 GO 杂化材料提供了可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6923/3631593/69e711749547/nihms451353f1.jpg

相似文献

9
Partially reduced graphene oxide as highly efficient DNA nanoprobe.部分还原氧化石墨烯作为高效DNA纳米探针。
Biosens Bioelectron. 2016 Jun 15;80:140-145. doi: 10.1016/j.bios.2016.01.052. Epub 2016 Jan 21.

引用本文的文献

2
Multi-analyte sensing strategies towards wearable and intelligent devices.面向可穿戴和智能设备的多分析物传感策略。
Chem Sci. 2022 Sep 24;13(42):12309-12325. doi: 10.1039/d2sc03750e. eCollection 2022 Nov 2.
9
Evolution of Supramolecular Systems Towards Next-Generation Biosensors.超分子系统向新一代生物传感器的演变
Front Chem. 2021 Aug 19;9:723111. doi: 10.3389/fchem.2021.723111. eCollection 2021.

本文引用的文献

1
Intensive Edge Effects of Nanographenes in Molecular Adsorptions.纳米石墨烯在分子吸附中的强烈边缘效应
J Phys Chem Lett. 2012 Feb 16;3(4):511-6. doi: 10.1021/jz2016704. Epub 2012 Feb 3.
2
Two dimensional soft material: new faces of graphene oxide.二维软物质:氧化石墨烯的新面貌。
Acc Chem Res. 2012 Aug 21;45(8):1356-64. doi: 10.1021/ar300047s. Epub 2012 Jun 4.
3
Biological and chemical sensors based on graphene materials.基于石墨烯材料的生物和化学传感器。
Chem Soc Rev. 2012 Mar 21;41(6):2283-307. doi: 10.1039/c1cs15270j. Epub 2011 Dec 5.
9
Graphene oxide nanocolloids.氧化石墨烯纳米胶体。
J Am Chem Soc. 2010 Dec 22;132(50):17667-9. doi: 10.1021/ja1078943. Epub 2010 Nov 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验