Suppr超能文献

基于 T1 加权图像的可变形脑图谱:多通道映射提高配准精度。

Diffeomorphic brain mapping based on T1-weighted images: improvement of registration accuracy by multichannel mapping.

机构信息

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

J Magn Reson Imaging. 2013 Jan;37(1):76-84. doi: 10.1002/jmri.23790. Epub 2012 Sep 12.

Abstract

PURPOSE

To improve image registration accuracy in neurodegenerative populations.

MATERIALS AND METHODS

This study used primary progressive aphasia, aged control, and young control T1-weighted images. Mapping to a template image was performed using single-channel Large Deformation Diffeomorphic Metric Mapping (LDDMM), a dual-channel method with ventricular anatomy in the second channel, and a dual-channel with appendage method, which utilized a priori knowledge of template ventricular anatomy in the deformable atlas.

RESULTS

Our results indicated substantial improvement in the registration accuracy over single-contrast-based brain mapping, mainly in the lateral ventricles and regions surrounding them. Dual-channel mapping significantly (P < 0.001) reduced the number of misclassified lateral ventricle voxels (based on a manually defined reference) over single-channel mapping. The dual-channel (w/appendage) method further reduced (P < 0.001) misclassification over the dual-channel method, indicating that the appendage provides more accurate anatomical correspondence for deformation.

CONCLUSION

Brain anatomical mapping by shape normalization is widely used for quantitative anatomical analysis. However, in many geriatric and neurodegenerative disorders, severe tissue atrophy poses a unique challenge for accurate mapping of voxels, especially around the lateral ventricles. In this study we demonstrate our ability to improve mapping accuracy by incorporating ventricular anatomy in LDDMM and by utilizing a priori knowledge of ventricular anatomy in the deformable atlas.

摘要

目的

提高神经退行性疾病人群的图像配准精度。

材料与方法

本研究使用原发性进行性失语症、老年对照组和年轻对照组的 T1 加权图像。使用单通道大变形仿射度量映射(LDDMM)、第二个通道包含脑室解剖结构的双通道方法以及利用模板脑室解剖结构先验知识的双通道加附件方法将图像映射到模板图像上。

结果

我们的结果表明,与基于单对比度的脑映射相比,注册精度有了显著提高,主要在侧脑室及其周围区域。与单通道映射相比,双通道映射显著(P<0.001)减少了侧脑室错误分类的体素数量(基于手动定义的参考)。双通道(带附件)方法进一步减少(P<0.001)了双通道方法的错误分类,表明附件为变形提供了更准确的解剖对应关系。

结论

通过形状归一化进行脑解剖映射被广泛用于定量解剖分析。然而,在许多老年和神经退行性疾病中,严重的组织萎缩对体素的准确映射构成了独特的挑战,尤其是在侧脑室周围。在这项研究中,我们通过在 LDDMM 中包含脑室解剖结构并利用变形图谱中脑室解剖结构的先验知识,展示了提高映射准确性的能力。

相似文献

4
Band-Limited Stokes Large Deformation Diffeomorphic Metric Mapping.带限 Stokes 大变形仿射度量映射。
IEEE J Biomed Health Inform. 2019 Jan;23(1):362-373. doi: 10.1109/JBHI.2018.2815346. Epub 2018 Mar 12.

引用本文的文献

5
Developmental trajectories of the human embryologic brain regions.人类胚胎脑区的发育轨迹。
Neurosci Lett. 2019 Aug 24;708:134342. doi: 10.1016/j.neulet.2019.134342. Epub 2019 Jun 19.
10
Brain MRI Pattern Recognition Translated to Clinical Scenarios.脑磁共振成像模式识别应用于临床病例
Front Neurosci. 2017 Oct 20;11:578. doi: 10.3389/fnins.2017.00578. eCollection 2017.

本文引用的文献

9
Diffeomorphic demons: efficient non-parametric image registration.微分同胚恶魔算法:高效的非参数图像配准
Neuroimage. 2009 Mar;45(1 Suppl):S61-72. doi: 10.1016/j.neuroimage.2008.10.040. Epub 2008 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验