Suppr超能文献

主动形状模型的非局部正则化:在内侧颞叶分割中的应用。

Nonlocal regularization for active appearance model: Application to medial temporal lobe segmentation.

作者信息

Hu Shiyan, Coupé Pierrick, Pruessner Jens C, Collins D Louis

机构信息

McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.

出版信息

Hum Brain Mapp. 2014 Feb;35(2):377-95. doi: 10.1002/hbm.22183. Epub 2012 Sep 15.

Abstract

The human medial temporal lobe (MTL) is an important part of the limbic system, and its substructures play key roles in learning, memory, and neurodegeneration. The MTL includes the hippocampus (HC), amygdala (AG), parahippocampal cortex (PHC), entorhinal cortex, and perirhinal cortex--structures that are complex in shape and have low between-structure intensity contrast, making them difficult to segment manually in magnetic resonance images. This article presents a new segmentation method that combines active appearance modeling and patch-based local refinement to automatically segment specific substructures of the MTL including HC, AG, PHC, and entorhinal/perirhinal cortex from MRI data. Appearance modeling, relying on eigen-decomposition to analyze statistical variations in image intensity and shape information in study population, is used to capture global shape characteristics of each structure of interest with a generative model. Patch-based local refinement, using nonlocal means to compare the image local intensity properties, is applied to locally refine the segmentation results along the structure borders to improve structure delimitation. In this manner, nonlocal regularization and global shape constraints could allow more accurate segmentations of structures. Validation experiments against manually defined labels demonstrate that this new segmentation method is computationally efficient, robust, and accurate. In a leave-one-out validation on 54 normal young adults, the method yielded a mean Dice κ of 0.87 for the HC, 0.81 for the AG, 0.73 for the anterior parts of the parahippocampal gyrus (entorhinal and perirhinal cortex), and 0.73 for the posterior parahippocampal gyrus.

摘要

人类内侧颞叶(MTL)是边缘系统的重要组成部分,其亚结构在学习、记忆和神经退行性变中起关键作用。MTL包括海马体(HC)、杏仁核(AG)、海马旁回皮质(PHC)、内嗅皮质和嗅周皮质——这些结构形状复杂,结构间强度对比度低,使得在磁共振图像中手动分割它们很困难。本文提出了一种新的分割方法,该方法结合了主动外观模型和基于补丁的局部细化,以从MRI数据中自动分割MTL的特定亚结构,包括HC、AG、PHC以及内嗅/嗅周皮质。外观模型依靠特征分解来分析研究人群中图像强度和形状信息的统计变化,用于通过生成模型捕获每个感兴趣结构的全局形状特征。基于补丁的局部细化使用非局部均值来比较图像局部强度属性,用于沿结构边界局部细化分割结果,以改善结构界定。通过这种方式,非局部正则化和全局形状约束可以实现更准确的结构分割。针对手动定义标签的验证实验表明,这种新的分割方法计算效率高、稳健且准确。在对54名正常年轻成年人进行的留一法验证中,该方法对HC的平均Dice κ为0.87,对AG为0.81,对海马旁回前部(内嗅和嗅周皮质)为0.73,对海马旁回后部为0.73。

相似文献

1
Nonlocal regularization for active appearance model: Application to medial temporal lobe segmentation.
Hum Brain Mapp. 2014 Feb;35(2):377-95. doi: 10.1002/hbm.22183. Epub 2012 Sep 15.
2
A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI.
Neuroimage Clin. 2017 May 26;15:466-482. doi: 10.1016/j.nicl.2017.05.022. eCollection 2017.
3
Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast MR imaging.
Neuroimage. 2011 Sep 15;58(2):549-59. doi: 10.1016/j.neuroimage.2011.06.054. Epub 2011 Jun 25.
4
Volumetric analysis of medial temporal lobe structures in brain development from childhood to adolescence.
Neuroimage. 2013 Jul 1;74:276-87. doi: 10.1016/j.neuroimage.2013.02.032. Epub 2013 Feb 26.
7
High-resolution fMRI of content-sensitive subsequent memory responses in human medial temporal lobe.
J Cogn Neurosci. 2010 Jan;22(1):156-73. doi: 10.1162/jocn.2009.21195.
8
A volumetric MRI study of the hippocampus and the parahippocampal region after unilateral medial temporal lobe resection.
J Neurosci Methods. 2006 Sep 30;156(1-2):293-304. doi: 10.1016/j.jneumeth.2006.02.021. Epub 2006 Mar 29.
9
Modulation of encoding and retrieval by recollection and familiarity: mapping the medial temporal lobe networks.
Neuroimage. 2011 Oct 15;58(4):1131-8. doi: 10.1016/j.neuroimage.2011.06.086. Epub 2011 Jul 7.
10
Dynamic changes in the medial temporal lobe during incidental learning of object-location associations.
Cereb Cortex. 2012 Apr;22(4):828-37. doi: 10.1093/cercor/bhr151. Epub 2011 Jun 27.

引用本文的文献

1
Automated segmentation of medial temporal lobe subregions on in vivo T1-weighted MRI in early stages of Alzheimer's disease.
Hum Brain Mapp. 2019 Aug 15;40(12):3431-3451. doi: 10.1002/hbm.24607. Epub 2019 Apr 29.
2
Multi-Template Mesiotemporal Lobe Segmentation: Effects of Surface and Volume Feature Modeling.
Front Neuroinform. 2018 Jul 12;12:39. doi: 10.3389/fninf.2018.00039. eCollection 2018.
4
Robust skull stripping using multiple MR image contrasts insensitive to pathology.
Neuroimage. 2017 Feb 1;146:132-147. doi: 10.1016/j.neuroimage.2016.11.017. Epub 2016 Nov 15.
5
NEOCIVET: Towards accurate morphometry of neonatal gyrification and clinical applications in preterm newborns.
Neuroimage. 2016 Sep;138:28-42. doi: 10.1016/j.neuroimage.2016.05.034. Epub 2016 May 13.
7
Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease.
Neuroimage Clin. 2012 Oct 17;1(1):141-52. doi: 10.1016/j.nicl.2012.10.002. eCollection 2012.
8
Magnetic Resonance Image Example-Based Contrast Synthesis.
IEEE Trans Med Imaging. 2013 Dec;32(12):2348-63. doi: 10.1109/TMI.2013.2282126. Epub 2013 Sep 16.

本文引用的文献

1
Multifeature landmark-free active appearance models: application to prostate MRI segmentation.
IEEE Trans Med Imaging. 2012 Aug;31(8):1638-50. doi: 10.1109/TMI.2012.2201498. Epub 2012 May 30.
2
Regression-Based Label Fusion for Multi-Atlas Segmentation.
Conf Comput Vis Pattern Recognit Workshops. 2011 Jun 20:1113-1120. doi: 10.1109/CVPR.2011.5995382.
3
Automated segmentation of basal ganglia and deep brain structures in MRI of Parkinson's disease.
Int J Comput Assist Radiol Surg. 2013 Jan;8(1):99-110. doi: 10.1007/s11548-012-0675-8. Epub 2012 Mar 18.
4
Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease.
Neuroimage. 2012 Feb 15;59(4):3736-47. doi: 10.1016/j.neuroimage.2011.10.080. Epub 2011 Nov 9.
5
BEaST: brain extraction based on nonlocal segmentation technique.
Neuroimage. 2012 Feb 1;59(3):2362-73. doi: 10.1016/j.neuroimage.2011.09.012. Epub 2011 Sep 16.
6
Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast MR imaging.
Neuroimage. 2011 Sep 15;58(2):549-59. doi: 10.1016/j.neuroimage.2011.06.054. Epub 2011 Jun 25.
7
A supervised patch-based approach for human brain labeling.
IEEE Trans Med Imaging. 2011 Oct;30(10):1852-62. doi: 10.1109/TMI.2011.2156806. Epub 2011 May 19.
8
A Bayesian model of shape and appearance for subcortical brain segmentation.
Neuroimage. 2011 Jun 1;56(3):907-22. doi: 10.1016/j.neuroimage.2011.02.046. Epub 2011 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验