Suppr超能文献

多模板中颞叶分割:表面和体积特征建模的影响

Multi-Template Mesiotemporal Lobe Segmentation: Effects of Surface and Volume Feature Modeling.

作者信息

Kim Hosung, Caldairou Benoit, Bernasconi Andrea, Bernasconi Neda

机构信息

Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.

Laboratory of Neuro Imaging, Department of Neurology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States.

出版信息

Front Neuroinform. 2018 Jul 12;12:39. doi: 10.3389/fninf.2018.00039. eCollection 2018.

Abstract

Numerous neurological disorders are associated with atrophy of mesiotemporal lobe structures, including the hippocampus (HP), amygdala (AM), and entorhinal cortex (EC). Accurate segmentation of these structures is, therefore, necessary for understanding the disease process and patient management. Recent multiple-template segmentation algorithms have shown excellent performance in HP segmentation. Purely surface-based methods precisely describe structural boundary but their performance likely depends on a large template library, as segmentation suffers when the boundaries of template and individual MRI are not well aligned while volume-based methods are less dependent. So far only few algorithms attempted segmentation of entire mesiotemporal structures including the parahippocampus. We compared performance of surface- and volume-based approaches in segmenting the three mesiotemporal structures and assess the effects of different environments (i.e., size of templates, under pathology). We also proposed an algorithm that combined surface- with volume-derived similarity measures for optimal template selection. To further improve the method, we introduced two new modules: (1) a non-linear registration that is driven by volume-based intensities and features sampled on deformable template surfaces; (2) a shape averaging based on regional weighting using multi-scale global-to-local icosahedron sampling. Compared to manual segmentations, our approach, namely showed high accuracy in 40 healthy controls (mean Dice index for HP/AM/EC = 89.7/89.3/82.9%) and 135 patients with temporal lobe epilepsy (88.7/89.0/82.6%). This accuracy was comparable across two different datasets of 1.5T and 3T MRI. It resulted in the best performance among tested multi-template methods that were either based on volume or surface data alone in terms of accuracy and sensitivity to detect atrophy related to epilepsy. Moreover, unlike purely surface-based multi-template segmentation, could maintain accurate performance even with a 50% template library size.

摘要

许多神经系统疾病都与中颞叶结构萎缩有关,包括海马体(HP)、杏仁核(AM)和内嗅皮质(EC)。因此,准确分割这些结构对于理解疾病进程和患者管理至关重要。最近的多模板分割算法在海马体分割中表现出了优异的性能。基于表面的方法能够精确描述结构边界,但其性能可能依赖于一个大型模板库,因为当模板和个体磁共振成像(MRI)的边界未很好对齐时,分割效果会受到影响,而基于体积的方法依赖性较小。到目前为止,只有少数算法尝试对包括海马旁回在内的整个中颞叶结构进行分割。我们比较了基于表面和基于体积的方法在分割三个中颞叶结构方面的性能,并评估了不同环境(即模板大小、病理状态下)的影响。我们还提出了一种算法,该算法结合了基于表面和基于体积的相似性度量来进行最优模板选择。为了进一步改进该方法,我们引入了两个新模块:(1)一种由基于体积的强度和在可变形模板表面采样的特征驱动的非线性配准;(2)一种基于使用多尺度全局到局部二十面体采样的区域加权的形状平均。与手动分割相比,我们的方法,即在40名健康对照者(海马体/杏仁核/内嗅皮质的平均骰子系数 = 89.7%/89.3%/82.9%)和135名颞叶癫痫患者(88.7%/89.0%/82.6%)中显示出高精度。这种精度在1.5T和3T MRI的两个不同数据集中具有可比性。在检测与癫痫相关的萎缩方面,就准确性和敏感性而言,它在仅基于体积或表面数据的测试多模板方法中表现最佳。此外,与纯粹基于表面的多模板分割不同,即使模板库大小减少50%,也能保持准确的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30cd/6052096/98736005ea21/fninf-12-00039-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验