Institute of Diagnostic & Interventional Radiology I, Department of Experimental Radiology, University Hospital Jena, Friedrich-Schiller Universität Jena, Erlanger Allee 101, 07747 Jena, Germany.
Nanomedicine (Lond). 2012 Sep;7(9):1443-59. doi: 10.2217/nnm.12.112.
Many different nanostructures have been developed for biomedical applications to date. Among them, iron oxide nanoparticles have been very prominent in MRI in diagnostic radiology. Nowadays, nanoparticle-based therapeutic applications have gained increased interest, leading to the development of a great variety of different and, in parts, sophisticated nanoparticle formulations. Whereas nanotherapy has been confined to the preclinical phase, magnetic hyperthermia has entered into the clinical phase via controlled studies in patients. Owing to the versatility of nanoparticles, researchers envision the combination of multiple modalities (e.g., targeting, diagnostics and therapy) to one carrier. Nevertheless, such approaches have been challenging due to the necessity of the adaptation of at least partially counteracting parameters between the different modalities, which will be analyzed in this review.
迄今为止,已经开发出许多用于生物医学应用的不同纳米结构。其中,氧化铁纳米颗粒在诊断放射学中的磁共振成像 (MRI) 中非常突出。如今,基于纳米颗粒的治疗应用引起了越来越多的兴趣,导致了各种不同的、部分复杂的纳米颗粒制剂的发展。虽然纳米治疗仍局限于临床前阶段,但通过对患者进行对照研究,磁热疗已进入临床阶段。由于纳米粒子的多功能性,研究人员设想将多种模式(例如靶向、诊断和治疗)结合到一个载体中。然而,由于需要适应不同模式之间至少部分对抗的参数,因此此类方法具有挑战性,这将在本综述中进行分析。
Nanomedicine (Lond). 2012-9
Acta Biomater. 2009-10-17
Adv Colloid Interface Sci. 2017-5-3
Eur J Med Res. 2025-6-2
Int J Mol Sci. 2024-8-17
ACS Appl Mater Interfaces. 2024-2-14
Materials (Basel). 2023-9-29
Appl Biochem Biotechnol. 2024-7