Haller Bernhard, Schmidt Georg, Ulm Kurt
Institut für Medizinische Statistik und Epidemiologie der Technischen Universität München, Ismaninger Straße 22, 81675 Munich, Germany.
Lifetime Data Anal. 2013 Jan;19(1):33-58. doi: 10.1007/s10985-012-9230-8. Epub 2012 Sep 26.
In many clinical research applications the time to occurrence of one event of interest, that may be obscured by another--so called competing--event, is investigated. Specific interventions can only have an effect on the endpoint they address or research questions might focus on risk factors for a certain outcome. Different approaches for the analysis of time-to-event data in the presence of competing risks were introduced in the last decades including some new methodologies, which are not yet frequently used in the analysis of competing risks data. Cause-specific hazard regression, subdistribution hazard regression, mixture models, vertical modelling and the analysis of time-to-event data based on pseudo-observations are described in this article and are applied to a dataset of a cohort study intended to establish risk stratification for cardiac death after myocardial infarction. Data analysts are encouraged to use the appropriate methods for their specific research questions by comparing different regression approaches in the competing risks setting regarding assumptions, methodology and interpretation of the results. Notes on application of the mentioned methods using the statistical software R are presented and extensions to the presented standard methods proposed in statistical literature are mentioned.
在许多临床研究应用中,会对一个感兴趣事件的发生时间进行研究,该时间可能会被另一个所谓的竞争事件所掩盖。特定干预措施只能对其针对的终点产生影响,或者研究问题可能聚焦于特定结局的风险因素。在过去几十年中,针对存在竞争风险时事件发生时间数据的分析引入了不同方法,包括一些尚未在竞争风险数据分析中频繁使用的新方法。本文描述了特定病因风险回归、子分布风险回归、混合模型、纵向建模以及基于伪观测值的事件发生时间数据分析,并将其应用于一项队列研究的数据集,该研究旨在建立心肌梗死后心脏死亡的风险分层。鼓励数据分析师通过在竞争风险背景下比较不同回归方法在假设、方法和结果解释方面的差异,为其特定研究问题使用合适的方法。文中给出了使用统计软件R应用上述方法的注意事项,并提及了统计文献中提出的对所呈现标准方法的扩展。