Suppr超能文献

训练习惯各异的中老年耐力跑者耐力表现的关键决定因素

Critical determinants of endurance performance in middle-aged and elderly endurance runners with heterogeneous training habits.

作者信息

Tanaka K, Takeshima N, Kato T, Niihata S, Ueda K

机构信息

Institute of Health and Sports Sciences, University of Tsukuba, Ibaraki, Japan.

出版信息

Eur J Appl Physiol Occup Physiol. 1990;59(6):443-9. doi: 10.1007/BF02388626.

Abstract

The current investigation was designed to determine which factor or what combination of factors would best account for distance running performance in middle-aged and elderly runners (mean age 57.5 years SD +/- 9.7) with heterogeneous training habits. Among 35 independent variables which were arbitrarily selected as possible prerequisites in the distance running performance of these runners, oxygen uptake (VO2) at lactate threshold (LT) (r = 0.781-0.889), maximal oxygen uptake (VO2 max) (r = 0.751 approximately 0.886), and chronological age (r = -0.736-(-)0.886) were found to be the 3 predictor variables showing the highest correlations with the mean running velocity at 5 km (V5km), 10 km (V10km), and marathon (VM). When all independent variables were used in a multiple regression analysis, any 3 or 4 variables selected from among VO2 at LT, chronological age, systolic blood pressure (SBP), atherogenic index (AI), and Katsura index (KI) were found to give the best explanation of V5km, V10km, or VM in a combined linear model. Linear multiple regression equations constructed for predicting the running performances were: V5km = 0.046X1-0.026X2-0.0056X3+5.17, V10km = 0.028X1-0.028X2-0.190X4-1.34X5+6.45, and VM = -0.0400X2-0.324X4-1.16X5+7.36, where X1 = VO2 at LT (ml.min-1.kg-1), X2 = chronological age, X3 = SBP, X4 = AI, and X5 = KI.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

当前的调查旨在确定哪些因素或因素的何种组合最能解释中年和老年跑步者(平均年龄57.5岁,标准差±9.7)在不同训练习惯下的长跑表现。在35个被任意选作这些跑步者长跑表现可能先决条件的自变量中,乳酸阈(LT)时的摄氧量(VO2)(r = 0.781 - 0.889)、最大摄氧量(VO2 max)(r = 0.751约0.886)和实际年龄(r = -0.736 - (-)0.886)被发现是与5公里(V5km)、10公里(V10km)和马拉松(VM)平均跑步速度相关性最高的3个预测变量。当所有自变量用于多元回归分析时,从LT时的VO2、实际年龄、收缩压(SBP)、致动脉粥样硬化指数(AI)和桂竹香指数(KI)中选出的任意3个或4个变量,在组合线性模型中对V5km、V10km或VM的解释最佳。为预测跑步表现构建的线性多元回归方程为:V5km = 0.046X1 - 0.026X2 - 0.0056X3 + 5.17,V10km = 0.028X1 - 0.028X2 - 0.190X4 - 1.34X5 + 6.45,VM = -0.0400X2 - 0.324X4 - 1.16X5 + 7.36,其中X1 = LT时的VO2(ml·min⁻¹·kg⁻¹),X2 = 实际年龄,X3 = SBP,X4 = AI,X5 = KI。(摘要截选至250字)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验