Suppr超能文献

快速遗传算法优化小鼠计算模型:有利于新生儿小鼠心肌细胞拟人化。

Rapid genetic algorithm optimization of a mouse computational model: benefits for anthropomorphization of neonatal mouse cardiomyocytes.

机构信息

Greenberg Division of Cardiology, Weill Cornell Medical College New York, NY, USA.

出版信息

Front Physiol. 2012 Nov 5;3:421. doi: 10.3389/fphys.2012.00421. eCollection 2012.

Abstract

While the mouse presents an invaluable experimental model organism in biology, its usefulness in cardiac arrhythmia research is limited in some aspects due to major electrophysiological differences between murine and human action potentials (APs). As previously described, these species-specific traits can be partly overcome by application of a cell-type transforming clamp (CTC) to anthropomorphize the murine cardiac AP. CTC is a hybrid experimental-computational dynamic clamp technique, in which a computationally calculated time-dependent current is inserted into a cell in real-time, to compensate for the differences between sarcolemmal currents of that cell (e.g., murine) and the desired species (e.g., human). For effective CTC performance, mismatch between the measured cell and a mathematical model used to mimic the measured AP must be minimal. We have developed a genetic algorithm (GA) approach that rapidly tunes a mathematical model to reproduce the AP of the murine cardiac myocyte under study. Compared to a prior implementation that used a template-based model selection approach, we show that GA optimization to a cell-specific model results in a much better recapitulation of the desired AP morphology with CTC. This improvement was more pronounced when anthropomorphizing neonatal mouse cardiomyocytes to human-like APs than to guinea pig APs. CTC may be useful for a wide range of applications, from screening effects of pharmaceutical compounds on ion channel activity, to exploring variations in the mouse or human genome. Rapid GA optimization of a cell-specific mathematical model improves CTC performance and may therefore expand the applicability and usage of the CTC technique.

摘要

虽然老鼠在生物学中是一种非常有价值的实验模式生物,但由于鼠类和人类动作电位(AP)之间存在重大电生理差异,其在心律失常研究中的应用在某些方面受到限制。如前所述,这些种间特有的特征可以通过应用细胞类型转化钳(CTC)来部分克服,以模拟人类的心脏 AP。CTC 是一种混合实验计算动态钳技术,其中实时将计算得出的时间依赖性电流插入细胞中,以补偿该细胞(例如鼠类)和所需物种(例如人类)的肌膜电流之间的差异。为了实现有效的 CTC 性能,测量细胞与用于模拟测量 AP 的数学模型之间的不匹配必须最小化。我们开发了一种遗传算法(GA)方法,可以快速调整数学模型以再现研究中的鼠类心肌细胞的 AP。与以前使用基于模板的模型选择方法的实现相比,我们表明,GA 对特定细胞模型的优化可在使用 CTC 时更好地再现所需的 AP 形态。当将新生鼠心肌细胞拟人化为人类 AP 而不是豚鼠 AP 时,这种改进更为明显。CTC 可能对广泛的应用有用,从筛选药物化合物对离子通道活性的影响,到探索鼠类或人类基因组中的变异。对特定细胞的数学模型进行快速 GA 优化可以提高 CTC 的性能,因此可以扩展 CTC 技术的适用性和使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a83b/3488799/7d6f3720ed39/fphys-03-00421-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验