Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20895-900. doi: 10.1073/pnas.1210573110. Epub 2012 Dec 4.
Cytoplasmic dynein is the major motor protein responsible for microtubule minus-end-directed movements in most eukaryotic cells. It transports a variety of cargoes and has numerous functions during spindle assembly and chromosome segregation. It is a large complex of about 1.4 MDa composed of six different subunits, interacting with a multitude of different partners. Most biochemical studies have been performed either with the native mammalian cytoplasmic dynein complex purified from tissue or, more recently, with recombinant dynein fragments from budding yeast and Dictyostelium. Hardly any information exists about the properties of human dynein. Moreover, experiments with an entire human dynein complex prepared from recombinant subunits with a well-defined composition are lacking. Here, we reconstitute a complete cytoplasmic dynein complex using recombinant human subunits and characterize its biochemical and motile properties. Using analytical gel filtration, sedimentation-velocity ultracentrifugation, and negative-stain electron microscopy, we demonstrate that the smaller subunits of the complex have an important structural function for complex integrity. Fluorescence microscopy experiments reveal that while engaged in collective microtubule transport, the recombinant human cytoplasmic dynein complex is an active, microtubule minus-end-directed motor, as expected. However, in contrast to recombinant dynein of nonmetazoans, individual reconstituted human dynein complexes did not show robust processive motility, suggesting a more intricate mechanism of processivity regulation for the human dynein complex. In the future, the comparison of reconstituted dynein complexes from different species promises to provide molecular insight into the mechanisms regulating the various functions of these large molecular machines.
细胞质动力蛋白是负责大多数真核细胞中微管负端导向运动的主要马达蛋白。它运输各种货物,并在纺锤体组装和染色体分离过程中具有多种功能。它是一个由大约 1.4MDa 组成的大型复合物,由六个不同的亚基组成,与许多不同的伴侣相互作用。大多数生化研究都是在从组织中纯化的天然哺乳动物细胞质动力蛋白复合物或最近从芽殖酵母和 Dicyostelium 重组的动力蛋白片段上进行的。关于人源动力蛋白的性质几乎没有任何信息。此外,缺乏使用从重组亚基制备的具有明确定组成的整个人源动力蛋白复合物进行的实验。在这里,我们使用重组人亚基重新构成完整的细胞质动力蛋白复合物,并表征其生化和运动特性。使用分析凝胶过滤、沉降速度超速离心和负染电子显微镜,我们证明了复合物的较小亚基对于复合物的完整性具有重要的结构功能。荧光显微镜实验表明,尽管参与集体微管运输,重组人细胞质动力蛋白复合物是一种活跃的、微管负端导向的马达,这是预期的。然而,与非后生动物的重组动力蛋白不同,个体重建的人源动力蛋白复合物没有表现出强大的连续性运动,这表明人源动力蛋白复合物的连续性调节机制更加复杂。在未来,对不同物种的重建动力蛋白复合物的比较有望为调节这些大型分子机器的各种功能的机制提供分子见解。