Department of Psychology, University of California, San Diego, La Jolla, CA 92093-0603, USA.
J Biol Rhythms. 2012 Dec;27(6):443-52. doi: 10.1177/0748730412461246.
In mammals, the suprachiasmatic nucleus (SCN) is the central pacemaker organizing circadian rhythms of behavior and physiology. At the cellular level, the mammalian clock consists of autoregulatory feedback loops involving a set of "clock genes," including the Cryptochrome (Cry) genes, Cry1 and Cry2. Experimental evidence suggests that Cry1 and Cry2 play distinct roles in circadian clock function. In mice, Cry1 is required for sustained circadian rhythms in dissociated SCN neurons or fibroblasts but not in organotypic SCN slices or at the behavioral level, whereas Cry2 is not required at any of these levels. It has been argued that coupling among SCN cellular oscillators compensates for clock gene defects to preserve oscillatory function. Here we test this hypothesis in Cry1(-/-) mice by first disrupting intercellular coupling in vivo using constant light (resulting in behavioral arrhythmicity) and then examining circadian clock gene expression in SCN slices at the single cell level. In this manner, we were able to test the role of intercellular coupling without drugs and while preserving tissue organization, avoiding the confounding influences of more invasive manipulations. Cry1(-/-) mice (as well as control Cry2(-/-) mice) bearing the PER2::LUC knock-in reporter were transferred from a standard light:dark cycle to constant bright light (~650 lux) to induce arrhythmic locomotor patterns. In SCN slices from these animals, we used bioluminescence imaging to monitor PER2::LUC expression in single cells. We show that SCN slices from rhythmic Cry1(-/-) and Cry2(-/-) mice had similarly high percentages of functional single-cell oscillators. In contrast, SCN slices from arrhythmic Cry1(-/-) mice had significantly fewer rhythmic cells than SCN slices from arrhythmic Cry2(-/-) mice. Thus, constant light in vivo disrupted intercellular SCN coupling to reveal a cell-autonomous circadian defect in Cry1(-/-) cells that is normally compensated by intercellular coupling in vivo.
在哺乳动物中,视交叉上核(SCN)是组织行为和生理昼夜节律的中枢起搏器。在细胞水平上,哺乳动物的时钟由涉及一组“时钟基因”的自调节反馈环组成,包括隐色素(Cry)基因 Cry1 和 Cry2。实验证据表明,Cry1 和 Cry2 在生物钟功能中发挥不同的作用。在小鼠中,Cry1 是分离的 SCN 神经元或成纤维细胞中持续昼夜节律所必需的,但在器官型 SCN 切片或行为水平上则不需要,而 Cry2 在这些水平上都不需要。有人认为,SCN 细胞振荡器之间的耦合可以弥补时钟基因缺陷,以保持振荡功能。在这里,我们通过首先使用恒定光照在体内破坏细胞间耦合(导致行为节律紊乱),然后在单细胞水平上检查 SCN 切片中的昼夜节律时钟基因表达,来测试 Cry1(-/-) 小鼠中的这个假设。通过这种方式,我们能够在不使用药物的情况下测试细胞间耦合的作用,同时保持组织的组织,避免更具侵入性的操作的混杂影响。从标准光照:黑暗周期转移到恒定明亮光照(~650 lux)以诱导节律运动模式的具有 PER2::LUC 敲入报告基因的 Cry1(-/-) 小鼠(以及对照 Cry2(-/-) 小鼠)。在这些动物的 SCN 切片中,我们使用生物发光成像来监测单个细胞中 PER2::LUC 的表达。我们表明,节律性 Cry1(-/-) 和 Cry2(-/-) 小鼠的 SCN 切片具有相似高比例的功能性单细胞振荡器。相比之下,节律性 Cry1(-/-) 小鼠的 SCN 切片中的节律性细胞数量明显少于节律性 Cry2(-/-) 小鼠的 SCN 切片。因此,体内恒定光照破坏了 SCN 细胞间的耦合,揭示了 Cry1(-/-) 细胞中自主的昼夜节律缺陷,而这种缺陷在体内通常是由细胞间耦合补偿的。