Suppr超能文献

关于代谢网络模型的可识别性

On the identifiability of metabolic network models.

作者信息

Berthoumieux Sara, Brilli Matteo, Kahn Daniel, de Jong Hidde, Cinquemani Eugenio

机构信息

INRIA Grenoble-Rhône-Alpes, Montbonnot, France.

出版信息

J Math Biol. 2013 Dec;67(6-7):1795-832. doi: 10.1007/s00285-012-0614-x. Epub 2012 Nov 15.

Abstract

A major problem for the identification of metabolic network models is parameter identifiability, that is, the possibility to unambiguously infer the parameter values from the data. Identifiability problems may be due to the structure of the model, in particular implicit dependencies between the parameters, or to limitations in the quantity and quality of the available data. We address the detection and resolution of identifiability problems for a class of pseudo-linear models of metabolism, so-called linlog models. Linlog models have the advantage that parameter estimation reduces to linear or orthogonal regression, which facilitates the analysis of identifiability. We develop precise definitions of structural and practical identifiability, and clarify the fundamental relations between these concepts. In addition, we use singular value decomposition to detect identifiability problems and reduce the model to an identifiable approximation by a principal component analysis approach. The criterion is adapted to real data, which are frequently scarce, incomplete, and noisy. The test of the criterion on a model with simulated data shows that it is capable of correctly identifying the principal components of the data vector. The application to a state-of-the-art dataset on central carbon metabolism in Escherichia coli yields the surprising result that only 4 out of 31 reactions, and 37 out of 100 parameters, are identifiable. This underlines the practical importance of identifiability analysis and model reduction in the modeling of large-scale metabolic networks. Although our approach has been developed in the context of linlog models, it carries over to other pseudo-linear models, such as generalized mass-action (power-law) models. Moreover, it provides useful hints for the identifiability analysis of more general classes of nonlinear models of metabolism.

摘要

代谢网络模型识别的一个主要问题是参数可识别性,即从数据中明确推断参数值的可能性。可识别性问题可能是由于模型结构,特别是参数之间的隐式依赖关系,或者是由于可用数据的数量和质量限制。我们解决一类代谢伪线性模型(即所谓的线性对数模型)的可识别性问题的检测与解决。线性对数模型的优点是参数估计简化为线性或正交回归,这便于可识别性分析。我们给出了结构可识别性和实际可识别性的精确定义,并阐明了这些概念之间的基本关系。此外,我们使用奇异值分解来检测可识别性问题,并通过主成分分析方法将模型简化为可识别的近似模型。该标准适用于实际数据,实际数据通常稀缺、不完整且有噪声。在具有模拟数据的模型上对该标准进行测试表明,它能够正确识别数据向量的主成分。将其应用于大肠杆菌中心碳代谢的最新数据集,得出了一个惊人的结果,即31个反应中只有4个,100个参数中只有37个是可识别的。这突出了可识别性分析和模型简化在大规模代谢网络建模中的实际重要性。虽然我们的方法是在非线性对数模型的背景下开发的,但它也适用于其他伪线性模型,如广义质量作用(幂律)模型。此外,它为更一般的代谢非线性模型的可识别性分析提供了有用的提示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验