Wohlleben Wendel
BASF SE, Material Physics GMC/R, 67056 Ludwigshafen, Germany.
J Nanopart Res. 2012 Dec;14(12):1300. doi: 10.1007/s11051-012-1300-z. Epub 2012 Nov 24.
Granulometry is the regulatory category where the differences between traditional materials and nanomaterials culminate. Reported herein is a careful validation of methods for the quantification of dispersability and size distribution in relevant media, and for the classification according to the EC nanodefinition recommendation. Suspension-based techniques can assess the nanodefinition only if the material in question is reasonably well dispersed. Using dispersed material of several chemical compositions (organic, metal, metal-oxide) as test cases we benchmark analytical ultracentrifugation (AUC), dynamic light scattering (DLS), hydrodynamic chromatography, nanoparticle tracking analysis (NTA) against the known content of bimodal suspensions in the commercially relevant range between 20 nm and a few microns. The results validate fractionating techniques, especially AUC, which successfully identifies any dispersed nanoparticle content from 14 to 99.9 nb% with less than 5 nb% deviation. In contrast, our screening casts severe doubt over the reliability of ensemble (scattering) techniques and highlights the potential of NTA to develop into a counting upgrade of DLS. The unique asset of centrifuges with interference, X-ray or absorption detectors-to quantify the dispersed solid content for each size interval from proteins over individualized nanoparticles up to agglomerates, while accounting for their loose packing-addresses also the adsorption/depletion of proteins and (de-)agglomeration of nanomaterials under cell culture conditions as tested for toxicological endpoints.
粒度分析是传统材料与纳米材料之间差异最为显著的监管类别。本文报道了对相关介质中分散性和尺寸分布进行量化以及根据欧盟纳米定义建议进行分类的方法的仔细验证。基于悬浮液的技术只有在所研究的材料充分分散的情况下才能评估纳米定义。我们以几种化学组成(有机、金属、金属氧化物)的分散材料作为测试案例,在20纳米至几微米的商业相关范围内,将分析超速离心法(AUC)、动态光散射法(DLS)、流体动力学色谱法、纳米颗粒跟踪分析法(NTA)与已知的双峰悬浮液含量进行基准对比。结果验证了分级技术,尤其是AUC,它能成功识别出14%至99.9%纳米颗粒含量的任何分散纳米颗粒,偏差小于5%。相比之下,我们的筛选对整体(散射)技术的可靠性提出了严重质疑,并突出了NTA发展成为DLS计数升级版的潜力。配备干涉、X射线或吸收探测器的离心机的独特优势——在考虑到其松散堆积的情况下,对从蛋白质到单个纳米颗粒再到团聚体的每个尺寸区间的分散固体含量进行量化——也适用于细胞培养条件下蛋白质的吸附/消耗以及纳米材料的(解)团聚情况,这已针对毒理学终点进行了测试。