Suppr超能文献

支持向量机用于检测智能家居环境中访客的存在。

SVM to detect the presence of visitors in a smart home environment.

作者信息

Petersen Johanna, Larimer Nicole, Kaye Jeffrey A, Pavel Misha, Hayes Tamara L

机构信息

Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5850-3. doi: 10.1109/EMBC.2012.6347324.

Abstract

With the rising age of the population, there is increased need to help elderly maintain their independence. Smart homes, employing passive sensor networks and pervasive computing techniques, enable the unobtrusive assessment of activities and behaviors of the elderly which can be useful for health state assessment and intervention. Due to the multiple health benefits associated with socializing, accurately tracking whether an individual has visitors to their home is one of the more important aspects of elders' behaviors that could be assessed with smart home technology. With this goal, we have developed a preliminary SVM model to identify periods where untagged visitors are present in the home. Using the dwell time, number of sensor firings, and number of transitions between major living spaces (living room, dining room, kitchen and bathroom) as features in the model, and self report from two subjects as ground truth, we were able to accurately detect the presence of visitors in the home with a sensitivity and specificity of 0.90 and 0.89 for subject 1, and of 0.67 and 0.78 for subject 2, respectively. These preliminary data demonstrate the feasibility of detecting visitors with in-home sensor data, but highlight the need for more advanced modeling techniques so the model performs well for all subjects and all types of visitors.

摘要

随着人口老龄化程度的不断加深,帮助老年人维持其独立性的需求日益增加。智能家居利用无源传感器网络和普适计算技术,能够对老年人的活动和行为进行不引人注意的评估,这对于健康状况评估和干预很有帮助。由于社交活动对健康有诸多益处,准确追踪个人家中是否有访客是利用智能家居技术可评估的老年人行为中较为重要的方面之一。出于这一目的,我们开发了一个初步的支持向量机模型,用于识别家中有无标签访客的时间段。以停留时间、传感器触发次数以及主要生活空间(客厅、餐厅、厨房和浴室)之间的转换次数作为模型特征,并以两名受试者的自我报告作为基准事实,我们能够准确检测出家中访客的存在,对于受试者1,灵敏度和特异性分别为0.90和0.89;对于受试者2,灵敏度和特异性分别为0.67和0.78。这些初步数据证明了利用家中传感器数据检测访客的可行性,但也凸显了需要更先进的建模技术,以便该模型对所有受试者和所有类型的访客都能有良好表现。

相似文献

7
sMRT: Multi-Resident Tracking in Smart Homes With Sensor Vectorization.sMRT:利用传感器向量化进行智能家居中的多居民跟踪。
IEEE Trans Pattern Anal Mach Intell. 2021 Aug;43(8):2809-2821. doi: 10.1109/TPAMI.2020.2973571. Epub 2021 Jul 1.
10
From Smart Homes to Smart-Ready Homes and Communities.从智能家居到智能就绪型住宅和社区。
Dement Geriatr Cogn Disord. 2019;47(3):157-163. doi: 10.1159/000497803. Epub 2019 Jun 27.

引用本文的文献

7
Using Smart City Technology to Make Healthcare Smarter.利用智慧城市技术让医疗更智能。
Proc IEEE Inst Electr Electron Eng. 2018 Apr;106(4):708-722. doi: 10.1109/JPROC.2017.2787688. Epub 2018 Jan 23.
10
Phone behaviour and its relationship to loneliness in older adults.老年人的手机使用行为及其与孤独感的关系。
Aging Ment Health. 2016 Oct;20(10):1084-91. doi: 10.1080/13607863.2015.1060947. Epub 2015 Jul 2.

本文引用的文献

8
Social support and ambulatory blood pressure: an examination of both receiving and giving.社会支持与动态血压:对接受与给予的考察
Int J Psychophysiol. 2006 Nov;62(2):328-36. doi: 10.1016/j.ijpsycho.2006.06.002. Epub 2006 Aug 14.
10
Social relationships and health.社会关系与健康。
Science. 1988 Jul 29;241(4865):540-5. doi: 10.1126/science.3399889.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验