Peterka Robert J
Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6137-40. doi: 10.1109/EMBC.2012.6347394.
Activation of vestibular afferents by a bilateral bipolar galvanic vestibular stimulus (GVS) evokes medial-lateral (ML) body sway. By applying a GVS feedback signal that is a function of measured ML head motion, the potential exists for GVS to restore a useful vestibular contribution to ML balance control in vestibular-deficient subjects who remain responsive to GVS. A key to developing an effective balance prosthesis using GVS is to determine the functional relationship between GVS and its influence on the brain's internal estimate of head motion. We describe how a model-based interpretation of GVS-evoked body sway can be used to identify this functional relationship. Results indicate that the GVS-evoked internal motion estimate is effectively a low-pass filtered version of the GVS current. With preliminary data, we demonstrate that GVS feedback, compensated for the identified low-pass characteristics, can either remove the ability of a subject with normal vestibular function to use vestibular information for balance control, or can restore the ability of a subject with bilateral vestibular loss to maintain balance in a condition requiring vestibular information for balance control.
双侧双极电刺激前庭(GVS)激活前庭传入神经会引起身体的左右(ML)摆动。通过应用一个与测量到的ML头部运动相关的GVS反馈信号,对于仍对GVS有反应的前庭功能不足的受试者,GVS有可能恢复对ML平衡控制的有效前庭贡献。开发一种使用GVS的有效平衡假体的关键在于确定GVS与其对大脑内部头部运动估计的影响之间的功能关系。我们描述了如何利用基于模型的对GVS诱发身体摆动的解释来识别这种功能关系。结果表明,GVS诱发的内部运动估计实际上是GVS电流的低通滤波版本。根据初步数据,我们证明,针对所识别的低通特性进行补偿的GVS反馈,要么会消除具有正常前庭功能的受试者利用前庭信息进行平衡控制的能力,要么会恢复双侧前庭丧失的受试者在需要前庭信息进行平衡控制的情况下保持平衡的能力。