Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160062, India.
Nanomedicine (Lond). 2013 Nov;8(11):1777-95. doi: 10.2217/nnm.12.192. Epub 2013 Feb 5.
An injectable, photocrosslinkable nanocomposite was prepared using a fumarate derivative of poly(glycerol sebacate) and nanohydroxyapatite.
MATERIALS & METHODS: Polymers with varying physical and mechanical properties were synthesized. Furthermore, nanocomposites were developed using a homogenization process by combining nanohydroxyapatite within poly(glycerol sebacate) matrix via photocrosslinking and evaluated both in vitro and in vivo.
RESULTS & DISCUSSION: The nanocomposites were injectable, highly bioactive and biocompatible. Addition of nanohydroxyapatite led to enhanced mechanical properties with an ultimate strength of 8 MPa. The optimized nanocomposite showed good in vitro cell attachment, proliferation and differentiation of rat bone marrow-derived mesenchymal stem cells. The in vivo evaluation in a rat calvarial bone defect model showed significantly high alkaline phosphatase activity and bone regeneration.
This injectable, biocompatible and bioactive in situ hardening composite graft was found to be suitable for load-bearing bone regeneration applications using minimally invasive surgery.
使用聚(癸二酸丙二醇酯)的富马酸衍生物和纳米羟基磷灰石制备可注射、光交联纳米复合材料。
合成了具有不同物理和机械性能的聚合物。此外,通过将纳米羟基磷灰石通过光交联结合到聚(癸二酸丙二醇酯)基质中,通过均化工艺开发了纳米复合材料,并进行了体外和体内评估。
纳米复合材料具有可注射性、高生物活性和生物相容性。添加纳米羟基磷灰石可提高力学性能,极限强度可达 8 MPa。优化的纳米复合材料表现出良好的体外细胞黏附、增殖和大鼠骨髓间充质干细胞的分化。在大鼠颅骨骨缺损模型中的体内评估表明,碱性磷酸酶活性和骨再生显著提高。
这种可注射、生物相容性和具有生物活性的原位硬化复合移植物可用于微创外科的承重骨再生应用。