Department of Applied Mathematics, University of Washington, Seattle, Washington, USA.
J Neurophysiol. 2013 May;109(10):2542-59. doi: 10.1152/jn.00976.2012. Epub 2013 Feb 27.
A key step in many perceptual decision tasks is the integration of sensory inputs over time, but a fundamental questions remain about how this is accomplished in neural circuits. One possibility is to balance decay modes of membranes and synapses with recurrent excitation. To allow integration over long timescales, however, this balance must be exceedingly precise. The need for fine tuning can be overcome via a "robust integrator" mechanism in which momentary inputs must be above a preset limit to be registered by the circuit. The degree of this limiting embodies a tradeoff between sensitivity to the input stream and robustness against parameter mistuning. Here, we analyze the consequences of this tradeoff for decision-making performance. For concreteness, we focus on the well-studied random dot motion discrimination task and constrain stimulus parameters by experimental data. We show that mistuning feedback in an integrator circuit decreases decision performance but that the robust integrator mechanism can limit this loss. Intriguingly, even for perfectly tuned circuits with no immediate need for a robustness mechanism, including one often does not impose a substantial penalty for decision-making performance. The implication is that robust integrators may be well suited to subserve the basic function of evidence integration in many cognitive tasks. We develop these ideas using simulations of coupled neural units and the mathematics of sequential analysis.
在许多感知决策任务中,一个关键步骤是随着时间的推移整合感官输入,但关于这在神经回路中是如何实现的,一个基本问题仍然存在。一种可能性是通过膜和突触的衰减模式与递归兴奋相平衡。然而,为了允许长时间的整合,这种平衡必须非常精确。通过“稳健积分器”机制可以克服微调的需求,其中瞬时输入必须超过预设限制才能被电路记录。这种限制的程度体现了对输入流的敏感性与对参数失谐的稳健性之间的权衡。在这里,我们分析了这种权衡对决策性能的影响。为了具体起见,我们专注于研究得很好的随机点运动辨别任务,并通过实验数据限制刺激参数。我们表明,积分器电路中的失谐反馈会降低决策性能,但稳健积分器机制可以限制这种损失。有趣的是,即使对于没有立即需要稳健机制的完美调谐电路,包括一个稳健机制通常不会对决策性能造成实质性的惩罚。这意味着稳健积分器可能非常适合在许多认知任务中作为证据整合的基本功能。我们使用耦合神经单元的模拟和序列分析的数学方法来发展这些思想。