Suppr超能文献

嗜冷梭菌(一种厌氧嗜冷菌)的极性脂质

The polar lipids of Clostridium psychrophilum, an anaerobic psychrophile.

作者信息

Guan Ziqiang, Tian Bing, Perfumo Amedea, Goldfine Howard

机构信息

Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Biochim Biophys Acta. 2013 Jun;1831(6):1108-12. doi: 10.1016/j.bbalip.2013.02.004. Epub 2013 Feb 20.

Abstract

We have examined the polar lipids of Clostridium psychrophilum, a recently characterized psychrophilic Clostridium isolated from an Antarctic microbial mat. Lipids were extracted from cells grown near the optimal growth temperature (+5°C) and at -5°C, and analyzed by two-dimensional thin layer chromatography and liquid chromatography coupled with mass spectrometry. The major phospholipids of this species are: cardiolipin, phosphatidylethanolamine, and phosphatidylglycerol. Phosphatidylserine and lyso-phosphatidylethanolamine were found as minor components. The most abundant glycolipids are a monoglycosyldiradylglycerol (MGDRG) and a diglycosyldiradylglycerol (DGDRG). The latter was only seen in cells grown at -5°C. An ethanolamine-phosphate derivative of N-acetylglucosaminyldiradylglycerol was seen in cells grown at -5°C and an ethanolamine-phosphate derivative of MGDRG was found in cells grown at +5°C. All lipids were present in both the all acyl and plasmalogen (alk-1'-enyl acyl) forms with the exception of PS and MGDRG, which were predominantly in the diacyl form. The significance of lipid changes at the two growth temperatures is discussed.

摘要

我们研究了嗜冷梭菌的极性脂质,该菌是一种最近从南极微生物垫中分离出来的嗜冷梭菌。从在最适生长温度(+5°C)和-5°C下生长的细胞中提取脂质,并通过二维薄层色谱和液相色谱-质谱联用进行分析。该菌种的主要磷脂有:心磷脂、磷脂酰乙醇胺和磷脂酰甘油。磷脂酰丝氨酸和溶血磷脂酰乙醇胺为次要成分。最丰富的糖脂是单糖基二烷基甘油(MGDRG)和二糖基二烷基甘油(DGDRG)。后者仅在-5°C下生长的细胞中可见。在-5°C下生长的细胞中可见N-乙酰葡糖胺基二烷基甘油的乙醇胺-磷酸衍生物,在+5°C下生长的细胞中发现MGDRG的乙醇胺-磷酸衍生物。除PS和MGDRG主要为二酰基形式外,所有脂质均以全酰基和缩醛磷脂(alk-1'-烯基酰基)形式存在。讨论了两种生长温度下脂质变化的意义。

相似文献

1
The polar lipids of Clostridium psychrophilum, an anaerobic psychrophile.
Biochim Biophys Acta. 2013 Jun;1831(6):1108-12. doi: 10.1016/j.bbalip.2013.02.004. Epub 2013 Feb 20.
3
Lipids of Sphaerophorus ridiculosis: plasmalogen composition.
J Bacteriol. 1974 Aug;119(2):643-5. doi: 10.1128/jb.119.2.643-645.1974.
4
Lipidomic Analysis of Clostridium cadaveris and Clostridium fallax.
Lipids. 2019 Aug;54(8):423-431. doi: 10.1002/lipd.12181. Epub 2019 Aug 1.
6
7
Lipid diversity among botulinum neurotoxin-producing clostridia.
Microbiology (Reading). 2012 Oct;158(Pt 10):2577-2584. doi: 10.1099/mic.0.060707-0. Epub 2012 Jul 26.
8
A phosphoethanolamine-modified glycosyl diradylglycerol in the polar lipids of Clostridium tetani.
J Lipid Res. 2010 Jul;51(7):1953-61. doi: 10.1194/jlr.M004788. Epub 2010 Feb 20.
9
The effect of growth temperature on the phospholipid and fatty acyl compositions of non-proteolytic Clostridium botulinum.
Int J Food Microbiol. 1998 Apr 14;40(3):159-67. doi: 10.1016/s0168-1605(98)00029-4.
10
Lipid composition in the classification of the butyric acid-producing clostridia.
J Gen Microbiol. 1983 Apr;129(4):1075-81. doi: 10.1099/00221287-129-4-1075.

引用本文的文献

1
Redox Homeostasis in Red Blood Cells: From Molecular Mechanisms to Antioxidant Strategies.
Curr Issues Mol Biol. 2025 Aug 14;47(8):655. doi: 10.3390/cimb47080655.
2
mPPases create a conserved anionic membrane fingerprint as identified via multi-scale simulations.
PLoS Comput Biol. 2022 Oct 3;18(10):e1010578. doi: 10.1371/journal.pcbi.1010578. eCollection 2022 Oct.
3
Ecogenomics and Adaptation Strategies of Southern Ocean Viral Communities.
mSystems. 2021 Aug 31;6(4):e0039621. doi: 10.1128/mSystems.00396-21. Epub 2021 Aug 10.
4
Lipid diversity in clostridia.
Biochim Biophys Acta Mol Cell Biol Lipids. 2021 Sep;1866(9):158966. doi: 10.1016/j.bbalip.2021.158966. Epub 2021 May 9.
5
Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus.
BMC Plant Biol. 2020 Jan 13;20(1):21. doi: 10.1186/s12870-020-2240-x.
6
Lipidomic Analysis of Clostridium cadaveris and Clostridium fallax.
Lipids. 2019 Aug;54(8):423-431. doi: 10.1002/lipd.12181. Epub 2019 Aug 1.
7
Fatty Acid and Hopanoid Adaption to Cold in the Methanotroph .
Front Microbiol. 2019 Apr 5;10:589. doi: 10.3389/fmicb.2019.00589. eCollection 2019.
8
Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure.
Extremophiles. 2017 Jul;21(4):651-670. doi: 10.1007/s00792-017-0939-x. Epub 2017 May 15.
9
The cellular lipids of Romboutsia.
Biochim Biophys Acta. 2016 Sep;1861(9 Pt A):1076-1082. doi: 10.1016/j.bbalip.2016.06.006. Epub 2016 Jun 14.
10
Changes in membrane plasmalogens of Clostridium pasteurianum during butanol fermentation as determined by lipidomic analysis.
PLoS One. 2015 Mar 25;10(3):e0122058. doi: 10.1371/journal.pone.0122058. eCollection 2015.

本文引用的文献

1
Lipid diversity among botulinum neurotoxin-producing clostridia.
Microbiology (Reading). 2012 Oct;158(Pt 10):2577-2584. doi: 10.1099/mic.0.060707-0. Epub 2012 Jul 26.
2
3
The appearance, disappearance and reappearance of plasmalogens in evolution.
Prog Lipid Res. 2010 Oct;49(4):493-8. doi: 10.1016/j.plipres.2010.07.003. Epub 2010 Jul 14.
4
A phosphoethanolamine-modified glycosyl diradylglycerol in the polar lipids of Clostridium tetani.
J Lipid Res. 2010 Jul;51(7):1953-61. doi: 10.1194/jlr.M004788. Epub 2010 Feb 20.
5
How do bacteria sense and respond to low temperature?
Arch Microbiol. 2010 Feb;192(2):85-95. doi: 10.1007/s00203-009-0539-y. Epub 2010 Jan 5.
6
Role of membrane lipid fatty acids in cold adaptation.
Cell Mol Biol (Noisy-le-grand). 2004 Jul;50(5):631-42.
7
A rapid method of total lipid extraction and purification.
Can J Biochem Physiol. 1959 Aug;37(8):911-7. doi: 10.1139/o59-099.
9
Variation of polar lipid composition of Bacillus subtilis (Marburg) with different growth conditions.
FEBS Lett. 1972 Oct 15;27(1):16-18. doi: 10.1016/0014-5793(72)80398-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验