Suppr超能文献

针对癌症中活性氧的营养对策:从机制到生物标志物和临床证据。

Nutritional countermeasures targeting reactive oxygen species in cancer: from mechanisms to biomarkers and clinical evidence.

机构信息

1 Department of Biochemistry, Biocenter Oulu, University of Oulu , Oulu, Finland .

出版信息

Antioxid Redox Signal. 2013 Dec 10;19(17):2157-96. doi: 10.1089/ars.2012.4662. Epub 2013 Apr 15.

Abstract

Reactive oxygen species (ROS) exert various biological effects and contribute to signaling events during physiological and pathological processes. Enhanced levels of ROS are highly associated with different tumors, a Western lifestyle, and a nutritional regime. The supplementation of food with traditional antioxidants was shown to be protective against cancer in a number of studies both in vitro and in vivo. However, recent large-scale human trials in well-nourished populations did not confirm the beneficial role of antioxidants in cancer, whereas there is a well-established connection between longevity of several human populations and increased amount of antioxidants in their diets. Although our knowledge about ROS generators, ROS scavengers, and ROS signaling has improved, the knowledge about the direct link between nutrition, ROS levels, and cancer is limited. These limitations are partly due to lack of standardized reliable ROS measurement methods, easily usable biomarkers, knowledge of ROS action in cellular compartments, and individual genetic predispositions. The current review summarizes ROS formation due to nutrition with respect to macronutrients and antioxidant micronutrients in the context of cancer and discusses signaling mechanisms, used biomarkers, and its limitations along with large-scale human trials.

摘要

活性氧(ROS)在生理和病理过程中发挥各种生物学效应,并参与信号事件。ROS 水平升高与多种肿瘤、西方生活方式和营养状况密切相关。许多体外和体内研究表明,通过食物补充传统抗氧化剂可预防癌症。然而,最近在营养良好的人群中进行的大规模人体试验并未证实抗氧化剂在癌症中的有益作用,而一些人类群体的长寿与饮食中抗氧化剂含量的增加之间存在着明确的联系。尽管我们对 ROS 生成剂、ROS 清除剂和 ROS 信号转导的了解有所提高,但关于营养、ROS 水平与癌症之间直接联系的知识仍然有限。这些局限性部分归因于缺乏标准化的可靠 ROS 测量方法、易于使用的生物标志物、ROS 在细胞区室中的作用以及个体遗传易感性等方面的知识。本文综述了营养物质(包括宏量营养素和抗氧化微量营养素)与癌症中 ROS 形成的关系,并讨论了信号转导机制、使用的生物标志物及其局限性以及大规模人体试验。

相似文献

1
Nutritional countermeasures targeting reactive oxygen species in cancer: from mechanisms to biomarkers and clinical evidence.
Antioxid Redox Signal. 2013 Dec 10;19(17):2157-96. doi: 10.1089/ars.2012.4662. Epub 2013 Apr 15.
2
A review of the interaction among dietary antioxidants and reactive oxygen species.
J Nutr Biochem. 2007 Sep;18(9):567-79. doi: 10.1016/j.jnutbio.2006.10.007. Epub 2007 Mar 23.
3
Reactive Oxygen Species and Antioxidants in Carcinogenesis and Tumor Therapy.
Biochemistry (Mosc). 2020 Oct;85(10):1254-1266. doi: 10.1134/S0006297920100132.
4
Reactive oxygen species in redox cancer therapy.
Cancer Lett. 2015 Oct 10;367(1):18-25. doi: 10.1016/j.canlet.2015.07.008. Epub 2015 Jul 14.
5
Functional food science and defence against reactive oxidative species.
Br J Nutr. 1998 Aug;80 Suppl 1:S77-112. doi: 10.1079/bjn19980106.
6
Antioxidant Vitamins and Ageing.
Subcell Biochem. 2018;90:1-23. doi: 10.1007/978-981-13-2835-0_1.
7
Efficacy and Interaction of Antioxidant Supplements as Adjuvant Therapy in Cancer Treatment: A Systematic Review.
Integr Cancer Ther. 2016 Mar;15(1):17-39. doi: 10.1177/1534735415610427. Epub 2015 Oct 26.
8
The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population.
J Am Coll Nutr. 2001 Oct;20(5 Suppl):464S-472S; discussion 473S-475S. doi: 10.1080/07315724.2001.10719185.
9
Role of antioxidants in cancer therapy.
Nutrition. 2013 Jan;29(1):15-21. doi: 10.1016/j.nut.2012.02.014. Epub 2012 Jul 10.
10
Oxidative stress in critical care: is antioxidant supplementation beneficial?
J Am Diet Assoc. 1998 Sep;98(9):1001-8. doi: 10.1016/S0002-8223(98)00230-2.

引用本文的文献

2
Role of Essential Oils and Antioxidants in the Treatment of Fibrosis.
Curr Drug Res Rev. 2025;17(1):76-89. doi: 10.2174/0125899775271616231205111827.
3
Reactive Oxygen Species: Role in Pathophysiology, and Mechanism of Endogenous and Dietary Antioxidants during Oxidative Stress.
Chonnam Med J. 2025 Jan;61(1):32-45. doi: 10.4068/cmj.2025.61.1.32. Epub 2025 Jan 24.
4
Comparison various level ascorbic acid and lycopene additions in semen diluent enhanced sperm quality of Sapudi ram.
J Anim Sci Technol. 2024 Sep;66(5):891-904. doi: 10.5187/jast.2023.e54. Epub 2024 Sep 30.
5
Limited expression of Nrf2 in neurons across the central nervous system.
Redox Biol. 2023 Sep;65:102830. doi: 10.1016/j.redox.2023.102830. Epub 2023 Jul 26.
6
Vitamin C: From nutrition to oxygen sensing and epigenetics.
Redox Biol. 2023 Jul;63:102753. doi: 10.1016/j.redox.2023.102753. Epub 2023 May 27.
7
Limited Expression of in Neurons Across the Central Nervous System.
bioRxiv. 2023 May 9:2023.05.09.540014. doi: 10.1101/2023.05.09.540014.
9
The Antioxidant Capacity of Breast Milk and Plasma of Women with or without Gestational Diabetes Mellitus.
Antioxidants (Basel). 2023 Mar 31;12(4):842. doi: 10.3390/antiox12040842.

本文引用的文献

1
Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis.
Nat Chem Biol. 2013 Feb;9(2):119-25. doi: 10.1038/nchembio.1142. Epub 2012 Dec 16.
2
Variation in selenoenzyme genes and prostate cancer risk and survival.
Prostate. 2013 May;73(7):734-42. doi: 10.1002/pros.22617. Epub 2012 Nov 9.
3
Mechanisms mediating the synergistic anticancer effects of combined γ-tocotrienol and sesamin treatment.
Planta Med. 2012 Nov;78(16):1731-9. doi: 10.1055/s-0032-1315302. Epub 2012 Sep 17.
4
Associations of circulating retinol, vitamin E, and 1,25-dihydroxyvitamin D with prostate cancer diagnosis, stage, and grade.
Cancer Causes Control. 2012 Nov;23(11):1865-73. doi: 10.1007/s10552-012-0052-5. Epub 2012 Aug 28.
5
Dietary antioxidants and the aetiology of pancreatic cancer: a cohort study using data from food diaries and biomarkers.
Gut. 2013 Oct;62(10):1489-96. doi: 10.1136/gutjnl-2011-301908. Epub 2012 Jul 23.
6
Vitamin intake and liver cancer risk: a report from two cohort studies in China.
J Natl Cancer Inst. 2012 Aug 8;104(15):1173-81. doi: 10.1093/jnci/djs277. Epub 2012 Jul 17.
7
Oxidative stress in apoptosis and cancer: an update.
Arch Toxicol. 2012 Nov;86(11):1649-65. doi: 10.1007/s00204-012-0906-3. Epub 2012 Jul 19.
9
Thioredoxin reductase 1 protects against chemically induced hepatocarcinogenesis via control of cellular redox homeostasis.
Carcinogenesis. 2012 Sep;33(9):1806-13. doi: 10.1093/carcin/bgs230. Epub 2012 Jul 12.
10
Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming.
Cancer Cell. 2012 Jul 10;22(1):66-79. doi: 10.1016/j.ccr.2012.05.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验